本文整理汇总了Java中cc.mallet.types.LabelAlphabet.lookupIndex方法的典型用法代码示例。如果您正苦于以下问题:Java LabelAlphabet.lookupIndex方法的具体用法?Java LabelAlphabet.lookupIndex怎么用?Java LabelAlphabet.lookupIndex使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cc.mallet.types.LabelAlphabet
的用法示例。
在下文中一共展示了LabelAlphabet.lookupIndex方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: testReadResolve
import cc.mallet.types.LabelAlphabet; //导入方法依赖的package包/类
/** Tests how serializing labels separately can lead to big losses.
* This currently fails. I'm not sure what to do about this. -cas
*/
public void testReadResolve () throws IOException, ClassNotFoundException
{
LabelAlphabet dict = new LabelAlphabet ();
dict.lookupIndex ("TEST1");
dict.lookupIndex ("TEST2");
dict.lookupIndex ("TEST3");
Label t1 = dict.lookupLabel ("TEST1");
Labelee l = new Labelee (dict, t1);
Labelee l2 = (Labelee) TestSerializable.cloneViaSerialization (l);
assertTrue (l.dict == l2.dict);
assertTrue (dict.lookupLabel("TEST1") == l.theLabel);
assertTrue (dict.lookupLabel("TEST1") == l2.theLabel);
assertTrue (l.theLabel == l2.theLabel);
}
示例2: createLabelVector
import cc.mallet.types.LabelAlphabet; //导入方法依赖的package包/类
/** Constructs a LabelVector which is a distribution over indices of
* the "positive" Instance. */
private LabelVector createLabelVector (LabelAlphabet labelAlphabet, double[] scores) {
if (labelAlphabet.growthStopped())
labelAlphabet.startGrowth();
for (int i=0; i < scores.length; i++)
labelAlphabet.lookupIndex(String.valueOf(i), true);
double[] allScores = new double[labelAlphabet.size()];
for (int i=0; i < labelAlphabet.size(); i++)
allScores[i] = 0.0;
for (int i=0; i < scores.length; i++) {
int index = labelAlphabet.lookupIndex(String.valueOf(i), true);
allScores[index] = scores[i];
}
return new LabelVector(labelAlphabet, allScores);
}
示例3: init
import cc.mallet.types.LabelAlphabet; //导入方法依赖的package包/类
private void init() {
svmLabel2mltLabel = new HashMap<Double, String>();
for (Entry<String, Double> entry : mltLabel2svmLabel.entrySet()) {
svmLabel2mltLabel.put(entry.getValue(), entry.getKey());
}
svmIndex2mltIndex = new int[model.nr_class + 1];
int[] sLabels = model.label;
LabelAlphabet labelAlphabet = getLabelAlphabet();
for (int sIndex = 0; sIndex < sLabels.length; sIndex++) {
double sLabel = sLabels[sIndex];
String mLabel = svmLabel2mltLabel.get(sLabel * 1.0);
int mIndex = labelAlphabet.lookupIndex(mLabel.toString(), false);
svmIndex2mltIndex[sIndex] = mIndex;
}
}
示例4: ignoretestReadResolve
import cc.mallet.types.LabelAlphabet; //导入方法依赖的package包/类
/** Tests how serializing labels separately can lead to big losses.
* This currently fails. I'm not sure what to do about this. -cas
*/
public void ignoretestReadResolve () throws IOException, ClassNotFoundException
{
LabelAlphabet dict = new LabelAlphabet ();
dict.lookupIndex ("TEST1");
dict.lookupIndex ("TEST2");
dict.lookupIndex ("TEST3");
Label t1 = dict.lookupLabel ("TEST1");
Labelee l = new Labelee (dict, t1);
Labelee l2 = (Labelee) TestSerializable.cloneViaSerialization (l);
assertTrue (l.dict == l2.dict);
assertTrue (dict.lookupLabel("TEST1") == l.theLabel);
assertTrue (dict.lookupLabel("TEST1") == l2.theLabel);
assertTrue (l.theLabel == l2.theLabel);
}
示例5: createBlankAlphabet
import cc.mallet.types.LabelAlphabet; //导入方法依赖的package包/类
private static LabelAlphabet createBlankAlphabet (int numOutcomes)
{
if (numOutcomes > 0) {
LabelAlphabet outcomes = new LabelAlphabet ();
/* Setup default outcomes */
for (int i = 0; i < numOutcomes; i++) {
outcomes.lookupIndex (new Integer (i));
}
return outcomes;
} else return null;
}
示例6: setUp
import cc.mallet.types.LabelAlphabet; //导入方法依赖的package包/类
protected void setUp ()
{
ld = new LabelAlphabet ();
lv = new LabelVector (ld,
new int[] {
ld.lookupIndex ("a"),
ld.lookupIndex ("b"),
ld.lookupIndex ("c"),
ld.lookupIndex ("d")},
new double[] {3, 4, 2, 1});
}
示例7: trainAll
import cc.mallet.types.LabelAlphabet; //导入方法依赖的package包/类
public void trainAll(ListDataSet dataSet) {
Matrix dataSetInput = dataSet.getInputMatrix();
Matrix max = dataSetInput.max(Ret.NEW, Matrix.ROW);
cumSum = new ArrayList<Integer>((int) max.getColumnCount());
int sum = 0;
cumSum.add(sum);
for (int i = (int) max.getColumnCount() - 1; i != -1; i--) {
sum += max.getAsInt(0, i) + 1;
cumSum.add(sum);
}
LabelAlphabet inputAlphabet = new LabelAlphabet();
int featureCount = getFeatureCount(dataSet);
for (int i = 0; i < featureCount; i++) {
// iterate from 1 to max (inclusive!)
for (int fv = 1; fv < max.getAsDouble(0, i) + 1; fv++) {
inputAlphabet.lookupIndex("Feature" + i + "=" + fv, true);
}
}
LabelAlphabet targetAlphabet = new LabelAlphabet();
for (int i = 0; i < dataSet.getTargetMatrix().getColumnCount(); i++) {
targetAlphabet.lookupIndex("Class" + i, true);
}
InstanceList trainingSet = new DataSet2InstanceList(dataSet, inputAlphabet, targetAlphabet, cumSum);
classifier = trainer.train(trainingSet);
}