当前位置: 首页>>代码示例>>Java>>正文


Java TokenAccuracyEvaluator.evaluate方法代码示例

本文整理汇总了Java中cc.mallet.fst.TokenAccuracyEvaluator.evaluate方法的典型用法代码示例。如果您正苦于以下问题:Java TokenAccuracyEvaluator.evaluate方法的具体用法?Java TokenAccuracyEvaluator.evaluate怎么用?Java TokenAccuracyEvaluator.evaluate使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在cc.mallet.fst.TokenAccuracyEvaluator的用法示例。


在下文中一共展示了TokenAccuracyEvaluator.evaluate方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: train

import cc.mallet.fst.TokenAccuracyEvaluator; //导入方法依赖的package包/类
public SyllTagModel train(Collection<Alignment> trainInputs, Collection<Alignment> testInputs, boolean eval) {
  Pipe pipe = makePipe();
  InstanceList trainExamples = makeExamplesFromAlignsWithPipe(trainInputs, pipe);
  InstanceList testExamples = null;
  if (testInputs != null) {
    testExamples = makeExamplesFromAlignsWithPipe(testInputs, pipe);
  }

  log.info("Training test-time syll aligner on whole data...");
  TransducerTrainer trainer = trainOnce(pipe, trainExamples);

  if (eval) {
    TokenAccuracyEvaluator evaler = new TokenAccuracyEvaluator(trainExamples, "traindata");
    evaler.evaluate(trainer);
    double trainAcc = evaler.getAccuracy("traindata");
    double testAcc = 0.0;
    if (testExamples != null) {
      TokenAccuracyEvaluator evaler2 = new TokenAccuracyEvaluator(testExamples, "testdata");
      evaler2.evaluate(trainer);
      testAcc = evaler2.getAccuracy("testdata");
    }
    log.info("Train data accuracy = " + trainAcc + ", test data accuracy = " + testAcc);
  }

  return new SyllTagModel((CRF) trainer.getTransducer());
}
 
开发者ID:steveash,项目名称:jg2p,代码行数:27,代码来源:SyllTagTrainer.java

示例2: testDualSpaceViewer

import cc.mallet.fst.TokenAccuracyEvaluator; //导入方法依赖的package包/类
public void testDualSpaceViewer () throws IOException
{
  Pipe pipe = TestMEMM.makeSpacePredictionPipe ();
  String[] data0 = { TestCRF.data[0] };
  String[] data1 = TestCRF.data;

  InstanceList training = new InstanceList (pipe);
  training.addThruPipe (new ArrayIterator (data0));
  InstanceList testing = new InstanceList (pipe);
  testing.addThruPipe (new ArrayIterator (data1));

  CRF crf = new CRF (pipe, null);
  crf.addFullyConnectedStatesForLabels ();
  CRFTrainerByLabelLikelihood crft = new CRFTrainerByLabelLikelihood (crf);
  TokenAccuracyEvaluator eval = new TokenAccuracyEvaluator (new InstanceList[] {training, testing}, new String[] {"Training", "Testing"});
  for (int i = 0; i < 5; i++) {
  	crft.train (training, 1);
  	eval.evaluate(crft);
  }

  CRFExtractor extor = hackCrfExtor (crf);
  Extraction e1 = extor.extract (new ArrayIterator (data1));

  Pipe pipe2 = TestMEMM.makeSpacePredictionPipe ();
  InstanceList training2 = new InstanceList (pipe2);
  training2.addThruPipe (new ArrayIterator (data0));
  InstanceList testing2 = new InstanceList (pipe2);
  testing2.addThruPipe (new ArrayIterator (data1));

  MEMM memm = new MEMM (pipe2, null);
  memm.addFullyConnectedStatesForLabels ();
  MEMMTrainer memmt = new MEMMTrainer (memm);
  TransducerEvaluator memmeval = new TokenAccuracyEvaluator (new InstanceList[] {training2, testing2}, new String[] {"Training2", "Testing2"});
  memmt.train (training2, 5);
  memmeval.evaluate(memmt);

  CRFExtractor extor2 = hackCrfExtor (memm);
  Extraction e2 = extor2.extract (new ArrayIterator (data1));

  if (!htmlDir.exists ()) htmlDir.mkdir ();
  LatticeViewer.viewDualResults (htmlDir, e1, extor, e2, extor2);

}
 
开发者ID:kostagiolasn,项目名称:NucleosomePatternClassifier,代码行数:44,代码来源:TestLatticeViewer.java

示例3: accuracyFor

import cc.mallet.fst.TokenAccuracyEvaluator; //导入方法依赖的package包/类
private double accuracyFor(InstanceList examples) {
  TokenAccuracyEvaluator teval = new TokenAccuracyEvaluator(examples, "train");
  teval.evaluate(lastTrainer);
  return teval.getAccuracy("train");
}
 
开发者ID:steveash,项目名称:jg2p,代码行数:6,代码来源:PhonemeCrfTrainer.java

示例4: ignoretestDualSpaceViewer

import cc.mallet.fst.TokenAccuracyEvaluator; //导入方法依赖的package包/类
public void ignoretestDualSpaceViewer () throws IOException
{
  Pipe pipe = TestMEMM.makeSpacePredictionPipe ();
  String[] data0 = { TestCRF.data[0] };
  String[] data1 = TestCRF.data;

  InstanceList training = new InstanceList (pipe);
  training.addThruPipe (new ArrayIterator (data0));
  InstanceList testing = new InstanceList (pipe);
  testing.addThruPipe (new ArrayIterator (data1));

  CRF crf = new CRF (pipe, null);
  crf.addFullyConnectedStatesForLabels ();
  CRFTrainerByLabelLikelihood crft = new CRFTrainerByLabelLikelihood (crf);
  TokenAccuracyEvaluator eval = new TokenAccuracyEvaluator (new InstanceList[] {training, testing}, new String[] {"Training", "Testing"});
  for (int i = 0; i < 5; i++) {
  	crft.train (training, 1);
  	eval.evaluate(crft);
  }

  CRFExtractor extor = hackCrfExtor (crf);
  Extraction e1 = extor.extract (new ArrayIterator (data1));

  Pipe pipe2 = TestMEMM.makeSpacePredictionPipe ();
  InstanceList training2 = new InstanceList (pipe2);
  training2.addThruPipe (new ArrayIterator (data0));
  InstanceList testing2 = new InstanceList (pipe2);
  testing2.addThruPipe (new ArrayIterator (data1));

  MEMM memm = new MEMM (pipe2, null);
  memm.addFullyConnectedStatesForLabels ();
  MEMMTrainer memmt = new MEMMTrainer (memm);
  TransducerEvaluator memmeval = new TokenAccuracyEvaluator (new InstanceList[] {training2, testing2}, new String[] {"Training2", "Testing2"});
  memmt.train (training2, 5);
  memmeval.evaluate(memmt);

  CRFExtractor extor2 = hackCrfExtor (memm);
  Extraction e2 = extor2.extract (new ArrayIterator (data1));

  if (!htmlDir.exists ()) htmlDir.mkdir ();
  LatticeViewer.viewDualResults (htmlDir, e1, extor, e2, extor2);

}
 
开发者ID:cmoen,项目名称:mallet,代码行数:44,代码来源:TestLatticeViewer.java


注:本文中的cc.mallet.fst.TokenAccuracyEvaluator.evaluate方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。