本文整理汇总了Java中cc.mallet.fst.CRFTrainerByThreadedLabelLikelihood.setGaussianPriorVariance方法的典型用法代码示例。如果您正苦于以下问题:Java CRFTrainerByThreadedLabelLikelihood.setGaussianPriorVariance方法的具体用法?Java CRFTrainerByThreadedLabelLikelihood.setGaussianPriorVariance怎么用?Java CRFTrainerByThreadedLabelLikelihood.setGaussianPriorVariance使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cc.mallet.fst.CRFTrainerByThreadedLabelLikelihood
的用法示例。
在下文中一共展示了CRFTrainerByThreadedLabelLikelihood.setGaussianPriorVariance方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: trainOnce
import cc.mallet.fst.CRFTrainerByThreadedLabelLikelihood; //导入方法依赖的package包/类
private TransducerTrainer trainOnce(Pipe pipe, InstanceList trainData) {
Stopwatch watch = Stopwatch.createStarted();
CRF crf = new CRF(pipe, null);
crf.addOrderNStates(trainData, new int[]{1}, null, null, null, null, false);
crf.addStartState();
crf.setWeightsDimensionAsIn(trainData, false);
if (initFrom != null) {
crf.initializeApplicableParametersFrom(initFrom);
}
log.info("Starting alignTag training...");
CRFTrainerByThreadedLabelLikelihood trainer = new CRFTrainerByThreadedLabelLikelihood(crf, 8);
trainer.setGaussianPriorVariance(2);
trainer.setAddNoFactors(true);
trainer.setUseSomeUnsupportedTrick(false);
trainer.train(trainData);
trainer.shutdown();
watch.stop();
log.info("Syll align Tag CRF Training took " + watch.toString());
crf.getInputAlphabet().stopGrowth();
crf.getOutputAlphabet().stopGrowth();
return trainer;
}
示例2: trainOnce
import cc.mallet.fst.CRFTrainerByThreadedLabelLikelihood; //导入方法依赖的package包/类
private TransducerTrainer trainOnce(Pipe pipe, InstanceList examples) {
Stopwatch watch = Stopwatch.createStarted();
CRF crf = new CRF(pipe, null);
crf.addOrderNStates(examples, new int[]{1}, null, null, null, null, false);
crf.addStartState();
// crf.setWeightsDimensionAsIn(examples, false);
log.info("Starting syllchain training...");
CRFTrainerByThreadedLabelLikelihood trainer = new CRFTrainerByThreadedLabelLikelihood(crf, 8);
trainer.setGaussianPriorVariance(2);
// trainer.setUseSomeUnsupportedTrick(false);
// trainer.setAddNoFactors(true);
trainer.train(examples);
trainer.shutdown();
watch.stop();
log.info("SyllChain CRF Training took " + watch.toString());
crf.getInputAlphabet().stopGrowth();
crf.getOutputAlphabet().stopGrowth();
return trainer;
}
示例3: trainOnce
import cc.mallet.fst.CRFTrainerByThreadedLabelLikelihood; //导入方法依赖的package包/类
private TransducerTrainer trainOnce(Pipe pipe, InstanceList trainData) {
Stopwatch watch = Stopwatch.createStarted();
CRF crf = new CRF(pipe, null);
crf.addOrderNStates(trainData, new int[]{1}, null, null, null, null, false);
crf.addStartState();
log.info("Starting alignTag training...");
CRFTrainerByThreadedLabelLikelihood trainer = new CRFTrainerByThreadedLabelLikelihood(crf, 8);
trainer.setGaussianPriorVariance(2);
// trainer.setUseSomeUnsupportedTrick(false);
trainer.train(trainData);
trainer.shutdown();
watch.stop();
log.info("Align Tag CRF Training took " + watch.toString());
crf.getInputAlphabet().stopGrowth();
crf.getOutputAlphabet().stopGrowth();
return trainer;
}
示例4: trainOnce
import cc.mallet.fst.CRFTrainerByThreadedLabelLikelihood; //导入方法依赖的package包/类
private TransducerTrainer trainOnce(Pipe pipe, InstanceList examples) {
Stopwatch watch = Stopwatch.createStarted();
CRF crf = new CRF(pipe, null);
crf.addOrderNStates(examples, new int[]{1}, null, null, null, null, false);
crf.addStartState();
crf.setWeightsDimensionAsIn(examples, true);
if (initFrom != null) {
crf.initializeApplicableParametersFrom(initFrom);
}
log.info("Starting syllchain training...");
CRFTrainerByThreadedLabelLikelihood trainer = new CRFTrainerByThreadedLabelLikelihood(crf, 8);
trainer.setGaussianPriorVariance(2);
trainer.setAddNoFactors(true);
// trainer.setUseSomeUnsupportedTrick(true);
trainer.train(examples);
trainer.shutdown();
watch.stop();
log.info("SyllChain CRF Training took " + watch.toString());
crf.getInputAlphabet().stopGrowth();
crf.getOutputAlphabet().stopGrowth();
return trainer;
}
示例5: trainOnce
import cc.mallet.fst.CRFTrainerByThreadedLabelLikelihood; //导入方法依赖的package包/类
private TransducerTrainer trainOnce(Pipe pipe, InstanceList trainData) {
Stopwatch watch = Stopwatch.createStarted();
CRF crf = new CRF(pipe, null);
// O,O O,N -O,C-
// N,O N,N N,C
// C,O ?C,N? C,C
Pattern forbidden = null;
if (USE_ONC_CODING) {
forbidden = Pattern.compile("(O,C|<START>,C|O,<END>)", Pattern.CASE_INSENSITIVE);
}
crf.addOrderNStates(trainData, new int[]{1}, null, null, forbidden, null, false);
crf.addStartState();
crf.setWeightsDimensionAsIn(trainData);
if (this.pullFrom != null) {
crf.initializeApplicableParametersFrom(pullFrom);
}
log.info("Starting syll phone training...");
CRFTrainerByThreadedLabelLikelihood trainer = new CRFTrainerByThreadedLabelLikelihood(crf, 8);
trainer.setGaussianPriorVariance(2);
trainer.setAddNoFactors(false);
trainer.setUseSomeUnsupportedTrick(true);
trainer.train(trainData);
trainer.shutdown();
watch.stop();
pipe.getAlphabet().stopGrowth();
pipe.getTargetAlphabet().stopGrowth();
log.info("Align Tag CRF Training took " + watch.toString());
return trainer;
}
示例6: makeNewTrainer
import cc.mallet.fst.CRFTrainerByThreadedLabelLikelihood; //导入方法依赖的package包/类
private static CRFTrainerByThreadedLabelLikelihood makeNewTrainer(CRF crf) {
CRFTrainerByThreadedLabelLikelihood trainer = new CRFTrainerByThreadedLabelLikelihood(crf, getCpuCount());
trainer.setGaussianPriorVariance(2);
trainer.setAddNoFactors(true);
trainer.setUseSomeUnsupportedTrick(false);
return trainer;
}
示例7: evaluate
import cc.mallet.fst.CRFTrainerByThreadedLabelLikelihood; //导入方法依赖的package包/类
/** MultiSegmentationEvaluator */
private static Fold evaluate(int iterationId, CRF crf,
InstanceList trainingSet, InstanceList testingSet, int threads) {
// TODO 1 see if it works (better) with simpler setup
CRFTrainerByThreadedLabelLikelihood trainer = new CRFTrainerByThreadedLabelLikelihood(
crf, threads);
// CRFTrainerByLabelLikelihood trainer = new
// CRFTrainerByLabelLikelihood(crf);
trainer.setGaussianPriorVariance(1);
String[] tags = new String[] { Jcas2TokenSequence.TARGET_I };
String[] continueTags = tags;
trainer.train(trainingSet);
MyMultiSegmentationEvaluator eval = new MyMultiSegmentationEvaluator(
new InstanceList[] { testingSet },//
new String[] { "TTesting" }, tags, continueTags,
PRINT_MISSCLASSIFIED);
eval.evaluate(trainer); // eval at end of training
// MultiSegmentationEvaluator evalOrig = new MultiSegmentationEvaluator(
// new InstanceList[] { testingSet },//
// new String[] { "TTesting" }, tags, continueTags);
// evalOrig.evaluate(trainer); // eval at end of training
LenientMultiSegmentationEvaluator evalLenient = new LenientMultiSegmentationEvaluator(
new InstanceList[] { testingSet },//
new String[] { "TTesting" }, tags, continueTags,
PRINT_MISSCLASSIFIED);
evalLenient.evaluate(trainer);
LOG.info("FOLD {} --> " + eval + " lenient: {}", iterationId,
evalLenient);
return new Fold(eval);
// TODO trainer.trainWithFeatureInduction
// TODO
// if ( runner.isInduceFeatures() ) {
// // Number of maximizer iterations between each call to the Feature
// Inducer. (10 in simpletagger and TUI)
// int numIterationsBetweenFeatureInductions = 10;
//
// // Maximum number of rounds of feature induction. (20 in
// simpleTagger, 99 in TUI)
// int numFeatureInductions = 20;
//
// // Maximum number of features to induce at each round of induction.
// (500 in simpletagger, 200 in TUI)
// int numFeaturesPerFeatureInduction = 300;
// // splits = new double[] {.1, .2, .5, .7}
//
// crft.trainWithFeatureInduction( training, null, testing, eval,
// iterations,
// numIterationsBetweenFeatureInductions, numFeatureInductions,
// numFeaturesPerFeatureInduction, 0.5,
// false, null );
// } else {
// // before
// converged = crft.train( training ); // , iterations );
// }
}