本文整理汇总了Java中weka.core.neighboursearch.LinearNNSearch类的典型用法代码示例。如果您正苦于以下问题:Java LinearNNSearch类的具体用法?Java LinearNNSearch怎么用?Java LinearNNSearch使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
LinearNNSearch类属于weka.core.neighboursearch包,在下文中一共展示了LinearNNSearch类的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: setOptions
import weka.core.neighboursearch.LinearNNSearch; //导入依赖的package包/类
/**
* Parses a given list of options.
* <p/>
*
<!-- options-start -->
* Valid options are: <p/>
*
* <pre> -min <num>
* Lower bound on the k nearest neighbors for finding max LOF (minPtsLB)
* (default = 10)</pre>
*
* <pre> -max <num>
* Upper bound on the k nearest neighbors for finding max LOF (minPtsUB)
* (default = 40)</pre>
*
* <pre> -A
* The nearest neighbour search algorithm to use (default: weka.core.neighboursearch.LinearNNSearch).
* </pre>
*
* <pre> -num-slots <num>
* Number of execution slots.
* (default 1 - i.e. no parallelism)</pre>
*
<!-- options-end -->
*
* @param options the list of options as an array of strings
* @throws Exception if an option is not supported
*/
@Override
public void setOptions(String[] options) throws Exception {
String minP = Utils.getOption("min", options);
if (minP.length() > 0) {
setMinPointsLowerBound(minP);
}
String maxP = Utils.getOption("max", options);
if (maxP.length() > 0) {
setMinPointsUpperBound(maxP);
}
String nnSearchClass = Utils.getOption('A', options);
if (nnSearchClass.length() != 0) {
String nnSearchClassSpec[] = Utils.splitOptions(nnSearchClass);
if (nnSearchClassSpec.length == 0) {
throw new Exception("Invalid NearestNeighbourSearch algorithm "
+ "specification string.");
}
String className = nnSearchClassSpec[0];
nnSearchClassSpec[0] = "";
setNNSearch((NearestNeighbourSearch) Utils.forName(
NearestNeighbourSearch.class, className, nnSearchClassSpec));
} else {
this.setNNSearch(new LinearNNSearch());
}
String slotsS = Utils.getOption("num-slots", options);
if (slotsS.length() > 0) {
setNumExecutionSlots(slotsS);
}
Utils.checkForRemainingOptions(options);
}
示例2: setOptions
import weka.core.neighboursearch.LinearNNSearch; //导入依赖的package包/类
/**
* Parses a given list of options. <p/>
*
<!-- options-start -->
* Valid options are: <p/>
*
* <pre> -A
* The nearest neighbour search algorithm to use (default: weka.core.neighboursearch.LinearNNSearch).
* </pre>
*
* <pre> -K <number of neighbours>
* Set the number of neighbours used to set the kernel bandwidth.
* (default all)</pre>
*
* <pre> -U <number of weighting method>
* Set the weighting kernel shape to use. 0=Linear, 1=Epanechnikov,
* 2=Tricube, 3=Inverse, 4=Gaussian.
* (default 0 = Linear)</pre>
*
* <pre> -D
* If set, classifier is run in debug mode and
* may output additional info to the console</pre>
*
* <pre> -W
* Full name of base classifier.
* (default: weka.classifiers.trees.DecisionStump)</pre>
*
* <pre>
* Options specific to classifier weka.classifiers.trees.DecisionStump:
* </pre>
*
* <pre> -D
* If set, classifier is run in debug mode and
* may output additional info to the console</pre>
*
<!-- options-end -->
*
* @param options the list of options as an array of strings
* @throws Exception if an option is not supported
*/
public void setOptions(String[] options) throws Exception {
String knnString = Utils.getOption('K', options);
if (knnString.length() != 0) {
setKNN(Integer.parseInt(knnString));
} else {
setKNN(-1);
}
String weightString = Utils.getOption('U', options);
if (weightString.length() != 0) {
setWeightingKernel(Integer.parseInt(weightString));
} else {
setWeightingKernel(LINEAR);
}
String nnSearchClass = Utils.getOption('A', options);
if(nnSearchClass.length() != 0) {
String nnSearchClassSpec[] = Utils.splitOptions(nnSearchClass);
if(nnSearchClassSpec.length == 0) {
throw new Exception("Invalid NearestNeighbourSearch algorithm " +
"specification string.");
}
String className = nnSearchClassSpec[0];
nnSearchClassSpec[0] = "";
setNearestNeighbourSearchAlgorithm( (NearestNeighbourSearch)
Utils.forName( NearestNeighbourSearch.class,
className,
nnSearchClassSpec)
);
}
else
this.setNearestNeighbourSearchAlgorithm(new LinearNNSearch());
super.setOptions(options);
}
示例3: setOptions
import weka.core.neighboursearch.LinearNNSearch; //导入依赖的package包/类
/**
* Parses a given list of options.
* <p/>
*
<!-- options-start -->
* Valid options are:
* <p/>
*
* <pre>
* -min <num>
* Lower bound on the k nearest neighbors for finding max LOF (minPtsLB)
* (default = 10)
* </pre>
*
* <pre>
* -max <num>
* Upper bound on the k nearest neighbors for finding max LOF (minPtsUB)
* (default = 40)
* </pre>
*
* <pre>
* -A
* The nearest neighbour search algorithm to use (default: weka.core.neighboursearch.LinearNNSearch).
* </pre>
*
* <pre>
* -num-slots <num>
* Number of execution slots.
* (default 1 - i.e. no parallelism)
* </pre>
*
<!-- options-end -->
*
* @param options the list of options as an array of strings
* @throws Exception if an option is not supported
*/
@Override
public void setOptions(String[] options) throws Exception {
String minP = Utils.getOption("min", options);
if (minP.length() > 0) {
setMinPointsLowerBound(minP);
}
String maxP = Utils.getOption("max", options);
if (maxP.length() > 0) {
setMinPointsUpperBound(maxP);
}
String nnSearchClass = Utils.getOption('A', options);
if (nnSearchClass.length() != 0) {
String nnSearchClassSpec[] = Utils.splitOptions(nnSearchClass);
if (nnSearchClassSpec.length == 0) {
throw new Exception("Invalid NearestNeighbourSearch algorithm "
+ "specification string.");
}
String className = nnSearchClassSpec[0];
nnSearchClassSpec[0] = "";
setNNSearch((NearestNeighbourSearch) Utils.forName(
NearestNeighbourSearch.class, className, nnSearchClassSpec));
} else {
this.setNNSearch(new LinearNNSearch());
}
String slotsS = Utils.getOption("num-slots", options);
if (slotsS.length() > 0) {
setNumExecutionSlots(slotsS);
}
Utils.checkForRemainingOptions(options);
}
示例4: getDefaultSearch
import weka.core.neighboursearch.LinearNNSearch; //导入依赖的package包/类
/**
* Returns the default nearest neighbor search to use.
*
* @return the default
*/
protected NearestNeighbourSearch getDefaultSearch() {
return new LinearNNSearch();
}