当前位置: 首页>>代码示例>>Java>>正文


Java SelectedTag类代码示例

本文整理汇总了Java中weka.core.SelectedTag的典型用法代码示例。如果您正苦于以下问题:Java SelectedTag类的具体用法?Java SelectedTag怎么用?Java SelectedTag使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


SelectedTag类属于weka.core包,在下文中一共展示了SelectedTag类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: afterPropertiesSet

import weka.core.SelectedTag; //导入依赖的package包/类
/**
 * Loads the training data as configured in {@link #dataConfig} and trains a
 * 3-gram SVM classifier.
 */
@Override
public void afterPropertiesSet() throws Exception {
	this.trainingData = svmTrainer.train();
	StringToWordVector stwvFilter = createFilter(this.trainingData);
	// Instances filterdInstances = Filter.useFilter(data, stwv);

	LibSVM svm = new LibSVM();
	svm.setKernelType(new SelectedTag(0, LibSVM.TAGS_KERNELTYPE));
	svm.setSVMType(new SelectedTag(0, LibSVM.TAGS_SVMTYPE));
	svm.setProbabilityEstimates(true);
	// svm.buildClassifier(filterdInstances);

	FilteredClassifier filteredClassifier = new FilteredClassifier();
	filteredClassifier.setFilter(stwvFilter);
	filteredClassifier.setClassifier(svm);
	filteredClassifier.buildClassifier(this.trainingData);
	this.classifier = filteredClassifier;

	// predict("nice cool amazing awesome beautiful");
	// predict("this movie is simply awesome");
	// predict("its very bad");
	// predict("Not that great");
}
 
开发者ID:venilnoronha,项目名称:movie-rating-prediction,代码行数:28,代码来源:SVMPredictorImpl.java

示例2: setMetricType

import weka.core.SelectedTag; //导入依赖的package包/类
/**
 * Set the metric type for ranking rules
 * 
 * @param d the type of metric
 */
public void setMetricType(SelectedTag d) {

  if (d.getTags() == TAGS_SELECTION) {
    m_metricType = d.getSelectedTag().getID();
  }

  if (m_metricType == CONFIDENCE) {
    setMinMetric(0.9);
  }

  if (m_metricType == LIFT || m_metricType == CONVICTION) {
    setMinMetric(1.1);
  }

  if (m_metricType == LEVERAGE) {
    setMinMetric(0.1);
  }
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:24,代码来源:Apriori.java

示例3: setOptions

import weka.core.SelectedTag; //导入依赖的package包/类
/**
 * Parses a given list of options.
 * <p/>
 * 
 * <!-- options-start --> Valid options are:
 * <p/>
 * 
 * <pre>
 * -mbc
 *  Applies a Markov Blanket correction to the network structure, 
 *  after a network structure is learned. This ensures that all 
 *  nodes in the network are part of the Markov blanket of the 
 *  classifier node.
 * </pre>
 * 
 * <pre>
 * -S [BAYES|MDL|ENTROPY|AIC|CROSS_CLASSIC|CROSS_BAYES]
 *  Score type (BAYES, BDeu, MDL, ENTROPY and AIC)
 * </pre>
 * 
 * <!-- options-end -->
 * 
 * @param options the list of options as an array of strings
 * @throws Exception if an option is not supported
 */
@Override
public void setOptions(String[] options) throws Exception {

  setMarkovBlanketClassifier(Utils.getFlag("mbc", options));

  String sScore = Utils.getOption('S', options);

  if (sScore.compareTo("BAYES") == 0) {
    setScoreType(new SelectedTag(Scoreable.BAYES, TAGS_SCORE_TYPE));
  }
  if (sScore.compareTo("BDeu") == 0) {
    setScoreType(new SelectedTag(Scoreable.BDeu, TAGS_SCORE_TYPE));
  }
  if (sScore.compareTo("MDL") == 0) {
    setScoreType(new SelectedTag(Scoreable.MDL, TAGS_SCORE_TYPE));
  }
  if (sScore.compareTo("ENTROPY") == 0) {
    setScoreType(new SelectedTag(Scoreable.ENTROPY, TAGS_SCORE_TYPE));
  }
  if (sScore.compareTo("AIC") == 0) {
    setScoreType(new SelectedTag(Scoreable.AIC, TAGS_SCORE_TYPE));
  }

  super.setOptions(options);
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:51,代码来源:LocalScoreSearchAlgorithm.java

示例4: initializeSVMProbs

import weka.core.SelectedTag; //导入依赖的package包/类
protected void initializeSVMProbs(Instances data) throws Exception {
  m_svmProbs = new SGD();
  m_svmProbs.setLossFunction(new SelectedTag(SGD.LOGLOSS, TAGS_SELECTION));
  m_svmProbs.setLearningRate(m_learningRate);
  m_svmProbs.setLambda(m_lambda);
  m_svmProbs.setEpochs(m_epochs);
  ArrayList<Attribute> atts = new ArrayList<Attribute>(2);
  atts.add(new Attribute("pred"));
  ArrayList<String> attVals = new ArrayList<String>(2);
  attVals.add(data.classAttribute().value(0));
  attVals.add(data.classAttribute().value(1));
  atts.add(new Attribute("class", attVals));
  m_fitLogisticStructure = new Instances("data", atts, 0);
  m_fitLogisticStructure.setClassIndex(1);

  m_svmProbs.buildClassifier(m_fitLogisticStructure);
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:18,代码来源:SGDText.java

示例5: getJavaInitializationString

import weka.core.SelectedTag; //导入依赖的package包/类
/**
  * Returns a description of the property value as java source.
  *
  * @return a value of type 'String'
  */
 public String getJavaInitializationString() {

   SelectedTag s = (SelectedTag)getValue();
   Tag [] tags = s.getTags();
   String result = "new SelectedTag("
     + s.getSelectedTag().getID()
     + ", {\n";
   for (int i = 0; i < tags.length; i++) {
     result += "new Tag(" + tags[i].getID()
+ ",\"" + tags[i].getReadable()
+ "\")";
     if (i < tags.length - 1) {
result += ',';
     }
     result += '\n';
   }
   return result + "})";
 }
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:24,代码来源:SelectedTagEditor.java

示例6: setAsText

import weka.core.SelectedTag; //导入依赖的package包/类
/**
  * Sets the current property value as text.
  *
  * @param text the text of the selected tag.
  * @exception java.lang.IllegalArgumentException if an error occurs
  */
 public void setAsText(String text)
   {

   SelectedTag s = (SelectedTag)getValue();
   Tag [] tags = s.getTags();
   try {
     for (int i = 0; i < tags.length; i++) {
if (text.equals(tags[i].getReadable())) {
  setValue(new SelectedTag(tags[i].getID(), tags));
  return;
}
     }
   } catch (Exception ex) {
     throw new java.lang.IllegalArgumentException(text);
   }
 }
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:23,代码来源:SelectedTagEditor.java

示例7: createLinearRegression

import weka.core.SelectedTag; //导入依赖的package包/类
public static LinearRegression createLinearRegression() {
  LinearRegression linreg = new LinearRegression();
  linreg.setAttributeSelectionMethod(new SelectedTag(LinearRegression.SELECTION_NONE, LinearRegression.TAGS_SELECTION));
  linreg.setEliminateColinearAttributes(false);
  // if wants debug info
  //linreg.setDebug(true);
  return linreg;
}
 
开发者ID:LARG,项目名称:TacTex,代码行数:9,代码来源:RegressionUtils.java

示例8: getFilterType

import weka.core.SelectedTag; //导入依赖的package包/类
@OptionMetadata(
  description = "The type of normalization to perform.",
  displayName = "attribute normalization",
  commandLineParamName = "normalization",
  commandLineParamSynopsis = "-normalization <int>",
  displayOrder = 12
)
public SelectedTag getFilterType() {
  return new SelectedTag(filterType, TAGS_FILTER);
}
 
开发者ID:Waikato,项目名称:wekaDeeplearning4j,代码行数:11,代码来源:Dl4jMlpClassifier.java

示例9: setSVMType

import weka.core.SelectedTag; //导入依赖的package包/类
/**
    * Sets the type of SVM (default SVMTYPE_L2)
    *
    * @param value The type of the SVM
    */
@Override
   public void setSVMType(SelectedTag value) {
       if (value.getTags() == TAGS_SVMTYPE) {
           setSolverType(SolverType.getById(value.getSelectedTag().getID()));
       }
   }
 
开发者ID:vukbatanovic,项目名称:NBSVM-Weka,代码行数:12,代码来源:NBSVM.java

示例10: makeFinalClusterer

import weka.core.SelectedTag; //导入依赖的package包/类
/**
 * Make the final PreconstructedKMeans clusterer to wrap the centroids and
 * stats found during map-reduce.
 * 
 * @param best the best result from the runs of k-means that were performed in
 *          parallel
 * @param preprocess any pre-processing filters applied
 * @param initialStartingPoints the initial starting centroids
 * @param finalNumIterations the final number of iterations performed
 * @return a final clusterer object
 * @throws DistributedWekaException if a problem occurs
 */
protected Clusterer makeFinalClusterer(KMeansReduceTask best,
  Filter preprocess, Instances initialStartingPoints, int finalNumIterations)
  throws DistributedWekaException {

  Clusterer finalClusterer = null;
  PreconstructedKMeans finalKMeans = new PreconstructedKMeans();
  // global priming data for the distance function (this will be in
  // the transformed space if we're using preprocessing filters)
  Instances globalPrimingData = best.getGlobalDistanceFunctionPrimingData();
  NormalizableDistance dist = new EuclideanDistance();
  dist.setInstances(globalPrimingData);
  finalKMeans.setClusterCentroids(best.getCentroidsForRun());
  finalKMeans.setFinalNumberOfIterations(finalNumIterations + 1);
  if (initialStartingPoints != null) {
    finalKMeans.setInitialStartingPoints(initialStartingPoints);
  }
  try {
    finalKMeans.setDistanceFunction(dist);
    finalKMeans.setClusterStats(best.getAggregatedCentroidSummaries());
  } catch (Exception e) {
    throw new DistributedWekaException(e);
  }

  if (!getInitWithRandomCentroids()) {
    finalKMeans.setInitializationMethod(new SelectedTag(
      SimpleKMeans.KMEANS_PLUS_PLUS, SimpleKMeans.TAGS_SELECTION));
  }

  finalKMeans.setDisplayStdDevs(getDisplayCentroidStdDevs());

  finalClusterer = finalKMeans;

  if (preprocess != null) {
    PreconstructedFilteredClusterer fc =
      new PreconstructedFilteredClusterer();
    fc.setFilter(preprocess);
    fc.setClusterer(finalKMeans);
    finalClusterer = fc;
  }

  return finalClusterer;
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:55,代码来源:KMeansClustererHadoopJob.java

示例11: setMetricType

import weka.core.SelectedTag; //导入依赖的package包/类
/**
 * Set the metric type to use.
 * 
 * @param d the metric type
 */
public void setMetricType(SelectedTag d) {
  int ordinal = d.getSelectedTag().getID();
  for (DefaultAssociationRule.METRIC_TYPE m : DefaultAssociationRule.METRIC_TYPE
    .values()) {
    if (m.ordinal() == ordinal) {
      m_metric = m;
      break;
    }
  }
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:16,代码来源:FPGrowth.java

示例12: setDirection

import weka.core.SelectedTag; //导入依赖的package包/类
/**
 * Set the search direction
 * 
 * @param d the direction of the search
 */
public void setDirection(SelectedTag d) {

  if (d.getTags() == TAGS_SELECTION) {
    m_searchDirection = d.getSelectedTag().getID();
  }
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:12,代码来源:BestFirst.java

示例13: setMethod

import weka.core.SelectedTag; //导入依赖的package包/类
/**
 * Sets the method used. Will be one of METHOD_1_AGAINST_ALL,
 * METHOD_ERROR_RANDOM, METHOD_ERROR_EXHAUSTIVE, or METHOD_1_AGAINST_1.
 *
 * @param newMethod the new method.
 */
public void setMethod(SelectedTag newMethod) {
  
  if (newMethod.getTags() == TAGS_METHOD) {
    m_Method = newMethod.getSelectedTag().getID();
  }
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:13,代码来源:MultiClassClassifier.java

示例14: setCostMatrixSource

import weka.core.SelectedTag; //导入依赖的package包/类
/**
 * Sets the source location of the cost matrix. Values other than
 * MATRIX_ON_DEMAND or MATRIX_SUPPLIED will be ignored.
 *
 * @param newMethod the cost matrix location method.
 */
public void setCostMatrixSource(SelectedTag newMethod) {
  
  if (newMethod.getTags() == TAGS_MATRIX_SOURCE) {
    m_MatrixSource = newMethod.getSelectedTag().getID();
  }
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:13,代码来源:CostSensitiveClassifier.java

示例15: getEvaluationMetric

import weka.core.SelectedTag; //导入依赖的package包/类
/**
 * Get the evaluation metric to use
 * 
 * @return the evaluation metric to use
 */
public SelectedTag getEvaluationMetric() {
  for (int i = 0; i < TAGS_EVAL.length; i++) {
    if (TAGS_EVAL[i].getIDStr().equalsIgnoreCase(m_evalMetric)) {
      return new SelectedTag(i, TAGS_EVAL);
    }
  }

  // if we get here then it could be because a plugin
  // metric is no longer available. Default to rmse
  return new SelectedTag(12, TAGS_EVAL);
}
 
开发者ID:mydzigear,项目名称:repo.kmeanspp.silhouette_score,代码行数:17,代码来源:IterativeClassifierOptimizer.java


注:本文中的weka.core.SelectedTag类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。