当前位置: 首页>>代码示例>>Java>>正文


Java IBk类代码示例

本文整理汇总了Java中weka.classifiers.lazy.IBk的典型用法代码示例。如果您正苦于以下问题:Java IBk类的具体用法?Java IBk怎么用?Java IBk使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


IBk类属于weka.classifiers.lazy包,在下文中一共展示了IBk类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: classify

import weka.classifiers.lazy.IBk; //导入依赖的package包/类
public void classify(){
	super.confusionMatrix = new int[classPossibilities][classPossibilities];
	IBk nereastNeighbor = new IBk(neighbors);
	for (int i = 0; i < iterations; i++) {
		Instances dataTrain = dataSource.trainCV(partitions,i);
		Instances dataTest = dataSource.testCV(partitions, i);
		int realClass = 0;
		int resultClass = 0;
		try {
			nereastNeighbor.buildClassifier(dataTrain);
			for (int j = 0; j < dataTest.numInstances(); j++) {
				Instance example = dataTest.instance(j);
				realClass = (int)example.value(classIndex);
				example.setClassMissing();
				resultClass = (int)nereastNeighbor.classifyInstance(example);
				this.confusionMatrix[realClass][resultClass]++;								
			}	
		} catch(Exception e) {
			e.printStackTrace();
		}
	}
}
 
开发者ID:andreynaldoni,项目名称:inteligencia-artificial-fatecpg,代码行数:23,代码来源:KNearestNeighbor.java

示例2: classify

import weka.classifiers.lazy.IBk; //导入依赖的package包/类
public void classify(){
	IBk nereastNeighbor = new IBk();
	int realClass = 0;
	int resultClass = 0;
	this.confusionMatrix = new int[classPossibilities][classPossibilities];
	try {
		nereastNeighbor.buildClassifier(this.dataSource);
		for (int i = 0; i < this.dataSourceToClassify.numInstances(); i++) {
			Instance example = this.dataSourceToClassify.instance(i);
			realClass = (int)example.value(classIndex);
			example.setClassMissing();
			resultClass = (int)nereastNeighbor.classifyInstance(example);
			this.confusionMatrix[realClass][resultClass]++;								
		}	
	} catch(Exception e) {
		e.printStackTrace();
	}
}
 
开发者ID:andreynaldoni,项目名称:inteligencia-artificial-fatecpg,代码行数:19,代码来源:NearestNeighbor.java

示例3: Classification

import weka.classifiers.lazy.IBk; //导入依赖的package包/类
public Classification(ArrayList<ClassifierType> cType) {

		cls = new Classifier[cType.size()];
		eval = new Evaluation[cType.size()];

		for(int i = 0; i < cType.size();i++){			
			switch(cType.get(i)){
			// TODO Will we use J48 or ID3 implementation of decision trees?
			case J48:
				cls[i] = new J48();
				break;
			case NAIVE_BAYES:
				// If bType == Incremental then cls = new UpdateableNaiveBayes(); else
				cls[i] = new NaiveBayes();
				break;
			case IBK:
				cls[i] = new IBk();
				break;
			case COSINE:
				cls[i] = useCosine();
				// TODO Add other cases: Decision Rule, KNN and so on.
			}
		}
	}
 
开发者ID:a-n-d-r-e-i,项目名称:seagull,代码行数:25,代码来源:Classification.java

示例4: initializeMembers

import weka.classifiers.lazy.IBk; //导入依赖的package包/类
/**
 * performs initialization of members
 */
@Override
protected void initializeMembers() {
  super.initializeMembers();

  m_KNNdetermined    = -1;
  m_NeighborsTestset = null;
  m_TrainsetNew      = null;
  m_TestsetNew       = null;
  m_UseNaiveSearch   = false;
  m_LabeledTestset   = null;
  m_Missing          = new ReplaceMissingValues();
  
  m_Classifier = new IBk();
  m_Classifier.setKNN(10);
  m_Classifier.setCrossValidate(true);
  m_Classifier.setWindowSize(0);
  m_Classifier.setMeanSquared(false);
  
  m_KNN = m_Classifier.getKNN();
  
  m_AdditionalMeasures.add("measureDeterminedKNN");
}
 
开发者ID:fracpete,项目名称:collective-classification-weka-package,代码行数:26,代码来源:CollectiveIBk.java

示例5: useCosine

import weka.classifiers.lazy.IBk; //导入依赖的package包/类
private IBk useCosine() {
	IBk ibk = new IBk();
	Instances data = ClassificationModel.getInstance().getInstances();
	Normalize normalizer = new Normalize(); 
	
	try {
		normalizer.setInputFormat(data);

		// Euclidean Distance working over normalized instances = Cosine Similarity according to Foundations of Statistical Natural Processing Language p.301
		// As long as attribute normalization is disabled.
		Instances normalizedInstances; 
		normalizedInstances = Filter.useFilter(data, normalizer); 
		ClassificationModel.getInstance().setInstances(normalizedInstances);
		DistanceFunction df = new EuclideanDistance(); 
		((EuclideanDistance) df).setDontNormalize(true); 		                        
		ibk.getNearestNeighbourSearchAlgorithm().setDistanceFunction(df); 
	} catch (Exception e) {
		// TODO Auto-generated catch block
		e.printStackTrace();
	}
	
	return ibk;
}
 
开发者ID:a-n-d-r-e-i,项目名称:seagull,代码行数:24,代码来源:Classification.java

示例6: makeOnlineClassifier

import weka.classifiers.lazy.IBk; //导入依赖的package包/类
public static Classifier makeOnlineClassifier(String wekaClassifier, String[] options) throws Exception {
    switch (WekaOnlineClassificationAlgorithms.valueOf(wekaClassifier)) {
        case naiveBayes:
            NaiveBayesUpdateable naiveBayesUpdateable = new NaiveBayesUpdateable();
            setOptionsForWekaPredictor(options, naiveBayesUpdateable);
            return naiveBayesUpdateable;
        case locallyWeightedLearner:
            LWL lwl = new LWL();
            setOptionsForWekaPredictor(options, lwl);
            return lwl;
        case nearestNeighbors:
            IBk ibk = new IBk();
            setOptionsForWekaPredictor(options, ibk);
            return ibk;
        case onlineDecisionTree:
            HoeffdingTree tree = new HoeffdingTree();
            setOptionsForWekaPredictor(options, tree);
            return tree;
        case stochasticGradientDescent:
            SGD sgd = new SGD();
            setOptionsForWekaPredictor(options, sgd);
            return sgd;
        default:
            return new NaiveBayesUpdateable();
    }
}
 
开发者ID:LakkiB,项目名称:mlstorm,代码行数:27,代码来源:WekaUtils.java

示例7: getIBk

import weka.classifiers.lazy.IBk; //导入依赖的package包/类
/**
 * Weka implementation of kNN
 */
public Classifier getIBk() throws Exception {
    Classifier model = new IBk();
    model.buildClassifier(instances);

    return model;
}
 
开发者ID:GeorgiMateev,项目名称:twitter-user-gender-classification,代码行数:10,代码来源:Train.java

示例8: LearnKNN

import weka.classifiers.lazy.IBk; //导入依赖的package包/类
@Override
public void LearnKNN() throws Exception {
	trainedData.setClassIndex(trainedData.numAttributes()-1);
       filter=new StringToWordVector();
       classifier=new FilteredClassifier();
       classifier.setFilter(filter);
       classifier.setClassifier(new IBk());
       classifier.buildClassifier(trainedData);
	
}
 
开发者ID:unsw-cse-soc,项目名称:Data-curation-API,代码行数:11,代码来源:ExtractClassificationTextKNNImpl.java

示例9: trainClassifier

import weka.classifiers.lazy.IBk; //导入依赖的package包/类
public void trainClassifier(Classifier classifier, File trainingDataset,
                            FileOutputStream trainingModel, Integer
                                    crossValidationFoldNumber) throws Exception {

    CSVLoader csvLoader = new CSVLoader();
    csvLoader.setSource(trainingDataset);

    Instances instances = csvLoader.getDataSet();

    switch(classifier) {
        case KNN:
            int K = (int) Math.ceil(Math.sqrt(instances.numInstances()));
            this.classifier = new IBk(K);
            break;
        case NB:
            this.classifier = new NaiveBayes();
    }

    if(instances.classIndex() == -1) {
        instances.setClassIndex(instances.numAttributes() - 1);
    }

    this.classifier.buildClassifier(instances);

    if(crossValidationFoldNumber > 0) {
        Evaluation evaluation = new Evaluation(instances);
        evaluation.crossValidateModel(this.classifier, instances, crossValidationFoldNumber,
                new Random(1));
        kappa = evaluation.kappa();
        fMeasure = evaluation.weightedFMeasure();
        confusionMatrix = evaluation.toMatrixString("Confusion matrix: ");
    }

    ObjectOutputStream outputStream = new ObjectOutputStream(trainingModel);
    outputStream.writeObject(this.classifier);
    outputStream.flush();
    outputStream.close();
}
 
开发者ID:FlorentinTh,项目名称:SpeakerAuthentication,代码行数:39,代码来源:Learning.java

示例10: evaluate_untrainedClassifier_throwClassifierPredictionException

import weka.classifiers.lazy.IBk; //导入依赖的package包/类
@Test(expected = ClassifierPredictionException.class)
public void evaluate_untrainedClassifier_throwClassifierPredictionException() {
    // Arrange
    Instances validationSet = getTestCoupledInstances();
    Classifier untrainedClassifier = new IBk();

    // Act
    EvaluationResult evaluation = evaluator.evaluate(untrainedClassifier, validationSet);

    // Assert
    assertEquals(1, evaluation.getMisclassifications().size());
}
 
开发者ID:NLeSC,项目名称:eEcology-Classification,代码行数:13,代码来源:EvaluatorTest.java

示例11: getTrainedClassifier

import weka.classifiers.lazy.IBk; //导入依赖的package包/类
private Classifier getTrainedClassifier(Instances validationSet) {
    Classifier classifier = new IBk(); // IBk is k-nearest neighbor
    try {
        classifier.buildClassifier(validationSet);
    } catch (Exception e) {
        throw new RuntimeException(e);
    }
    return classifier;
}
 
开发者ID:NLeSC,项目名称:eEcology-Classification,代码行数:10,代码来源:EvaluatorTest.java

示例12: KNNIBK

import weka.classifiers.lazy.IBk; //导入依赖的package包/类
/** Constructor for the KNN, with the default number of neighbours. */
public KNNIBK() {
  if(LogService.minVerbosityLevel>0)
    System.out.println("For KNN, kk="+kk);
  wekaCl = new IBk(kk);
  learnerName = "KNN";
}
 
开发者ID:Network-of-BioThings,项目名称:GettinCRAFTy,代码行数:8,代码来源:KNNIBK.java

示例13: EvaluateKNN

import weka.classifiers.lazy.IBk; //导入依赖的package包/类
@Override
public List<Classification> EvaluateKNN() throws Exception 
{
	List<Classification> lstEvaluationDetail=new ArrayList<>();
	trainedData.setClassIndex(trainedData.numAttributes()-1);
       filter=new StringToWordVector();
       classifier=new FilteredClassifier();
       classifier.setFilter(filter);
       classifier.setClassifier(new IBk());
       Evaluation eval=new Evaluation(trainedData);
       eval.crossValidateModel(classifier, trainedData, 4, new Random(1));
       /*try
       {
       for(int i=0;i<10000;i++)
       {
       	cls.setPrecision(eval.precision(i));
       	cls.setRecall(eval.recall(i));
       	cls.setAuc(eval.areaUnderPRC(i));
       	cls.setFMeasure(eval.fMeasure(i));
       	cls.setFn(eval.falseNegativeRate(i));
       	cls.setFp(eval.falsePositiveRate(i));
       	cls.setTn(eval.trueNegativeRate(i));
       	cls.setTp(eval.truePositiveRate(i));
       	cls.setMeanAbsoluteError(eval.meanAbsoluteError());
       	cls.setRelativeAbsoluteError(eval.relativeAbsoluteError());
       	cls.setCorrect(eval.correct());
       	cls.setKappa(eval.kappa());
       	cls.setNumInstances(eval.numInstances());
       	cls.setInCorrect(eval.incorrect());
       	lstEvaluationDetail.add(new Classification(cls.getPrecision(),
       			cls.getRecall(),
       			cls.getAuc(),
       			cls.getCorrect(),
       			cls.getInCorrect(),
       			cls.getErrorRate(),
       			cls.getFn(),
       			cls.getFp(),
       			cls.getTn(),
       			cls.getTp(),
       			cls.getKappa(),
       			cls.getMeanAbsoluteError(),
       			cls.getNumInstances(),
       			cls.getRelativeAbsoluteError(),
       			cls.getFMeasure()));
       }
       }
       catch(Exception ex)
       {
       	
       }*/
       return lstEvaluationDetail;
}
 
开发者ID:unsw-cse-soc,项目名称:Data-curation-API,代码行数:53,代码来源:ExtractClassificationTextKNNImpl.java

示例14: main

import weka.classifiers.lazy.IBk; //导入依赖的package包/类
public static void main(String[] args) {

        try {
            Instances instances = DataImport.getInstancesFromARFF(IONOSPHERE_FILEPATH);
            instances.setClassIndex(instances.numAttributes() - 1);

            /*
            LibSVM svm = new LibSVM();
            svm.setOptions(Utils.splitOptions("-k 0"));
            */


            EstimatorClassifiersWrapper holdOutSet =
                    new EstimatorClassifiersWrapper(new HoldOut(instances, 0.66),
                            new J48(), new NaiveBayes(), new IBk(3)
                    );
            System.out.println(holdOutSet.getClassifiersErrors());


            EstimatorClassifiersWrapper crossValidationSet =
                    new EstimatorClassifiersWrapper(new CrossValidation(instances, 10),
                            new J48(), new NaiveBayes(), new IBk(3)
                    );
            System.out.println(crossValidationSet.getClassifiersErrors());


            EstimatorClassifiersWrapper leaveOneOutSet =
                    new EstimatorClassifiersWrapper(new LeaveOneOut(instances),
                            new J48(), new NaiveBayes(), new IBk(3)
                    );
            System.out.println(leaveOneOutSet.getClassifiersErrors());


            EstimatorClassifiersWrapper bootstrapSet =
                    new EstimatorClassifiersWrapper(new Bootstrap(instances),
                            new J48(), new NaiveBayes(), new IBk(3)
                    );
            System.out.println(bootstrapSet.getClassifiersErrors());



            ClassifierEstimatorsWrapper j48Set = new ClassifierEstimatorsWrapper(
                    new J48(),
                    new HoldOut(instances, 0.66),
                    new CrossValidation(instances, 10),
                    new LeaveOneOut(instances),
                    new Bootstrap(instances)
            );
            System.out.println(j48Set.getEstimatorsErrors());

            ClassifierEstimatorsWrapper naiveBayerSet = new ClassifierEstimatorsWrapper(
                    new NaiveBayes(),
                    new HoldOut(instances, 0.66),
                    new CrossValidation(instances, 10),
                    new LeaveOneOut(instances),
                    new Bootstrap(instances)
            );
            System.out.println(naiveBayerSet.getEstimatorsErrors());

            ClassifierEstimatorsWrapper ibk3Set = new ClassifierEstimatorsWrapper(
                    new IBk(3),
                    new HoldOut(instances, 0.66),
                    new CrossValidation(instances, 10),
                    new LeaveOneOut(instances),
                    new Bootstrap(instances)
            );
            System.out.println(ibk3Set.getEstimatorsErrors());

        } catch (Exception e) {
            e.printStackTrace();
        }
    }
 
开发者ID:garciparedes,项目名称:java-examples,代码行数:73,代码来源:MainEstimationTest.java

示例15: classifyIBk

import weka.classifiers.lazy.IBk; //导入依赖的package包/类
public IBk classifyIBk(Instances data) throws Exception {
    IBk ibk = new IBk();
    ibk.setKNN(10);
    ibk.buildClassifier(data);
    return ibk;
}
 
开发者ID:andrzejtrzaska,项目名称:VoiceStressAnalysis,代码行数:7,代码来源:Classification.java


注:本文中的weka.classifiers.lazy.IBk类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。