当前位置: 首页>>代码示例>>Java>>正文


Java Ranker类代码示例

本文整理汇总了Java中weka.attributeSelection.Ranker的典型用法代码示例。如果您正苦于以下问题:Java Ranker类的具体用法?Java Ranker怎么用?Java Ranker使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


Ranker类属于weka.attributeSelection包,在下文中一共展示了Ranker类的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: preProcessData

import weka.attributeSelection.Ranker; //导入依赖的package包/类
public static Instances preProcessData(Instances data) throws Exception{
	
	/* 
	 * Remove useless attributes
	 */
	RemoveUseless removeUseless = new RemoveUseless();
	removeUseless.setOptions(new String[] { "-M", "99" });	// threshold
	removeUseless.setInputFormat(data);
	data = Filter.useFilter(data, removeUseless);

	
	/* 
	 * Remove useless attributes
	 */
	ReplaceMissingValues fixMissing = new ReplaceMissingValues();
	fixMissing.setInputFormat(data);
	data = Filter.useFilter(data, fixMissing);
	

	/* 
	 * Remove useless attributes
	 */
	Discretize discretizeNumeric = new Discretize();
	discretizeNumeric.setOptions(new String[] {
			"-O",
			"-M",  "-1.0", 
			"-B",  "4",  // no of bins
			"-R",  "first-last"}); //range of attributes
	fixMissing.setInputFormat(data);
	data = Filter.useFilter(data, fixMissing);

	/* 
	 * Select only informative attributes
	 */
	InfoGainAttributeEval eval = new InfoGainAttributeEval();
	Ranker search = new Ranker();
	search.setOptions(new String[] { "-T", "0.001" });	// information gain threshold
	AttributeSelection attSelect = new AttributeSelection();
	attSelect.setEvaluator(eval);
	attSelect.setSearch(search);
	
	// apply attribute selection
	attSelect.SelectAttributes(data);
	
	// remove the attributes not selected in the last run
	data = attSelect.reduceDimensionality(data);
	
	

	return data;
}
 
开发者ID:PacktPublishing,项目名称:Machine-Learning-End-to-Endguide-for-Java-developers,代码行数:52,代码来源:KddCup.java

示例2: InfoGainAttributeEval

import weka.attributeSelection.Ranker; //导入依赖的package包/类
public static AttributeSelection InfoGainAttributeEval(Instances data) throws Exception{
    AttributeSelection filter = new AttributeSelection();
    InfoGainAttributeEval evaluator = new InfoGainAttributeEval();
    filter.setEvaluator(evaluator);
    Ranker search = new Ranker();
    search.setThreshold(0);
    filter.setSearch(search);
    filter.setInputFormat(data);
    
    return filter;
}
 
开发者ID:amineabdaoui,项目名称:french-sentiment-classification,代码行数:12,代码来源:SelectionAttributs.java

示例3: GainRatioAttributeEval

import weka.attributeSelection.Ranker; //导入依赖的package包/类
public static AttributeSelection GainRatioAttributeEval(Instances data, int n) throws Exception{
    AttributeSelection filter = new AttributeSelection();
    GainRatioAttributeEval evaluator = new GainRatioAttributeEval();
    filter.setEvaluator(evaluator);
    Ranker search = new Ranker();
    search.setNumToSelect(n);
    filter.setSearch(search);
    filter.setInputFormat(data);
    
    return filter;
}
 
开发者ID:amineabdaoui,项目名称:french-sentiment-classification,代码行数:12,代码来源:SelectionAttributs.java

示例4: configureCostSensitiveClassifier

import weka.attributeSelection.Ranker; //导入依赖的package包/类
/**
 * Sets a default CostSensitiveClassifier with SMO. The settings of this method must be modified if used for another project.
 * @param data weka data containing instances and attributes
 * @param costSensitiveClassifier unconfigured Cost Sensitive Classifier
 * @param costMatrix Cost Matrix
 * @return CostSensitiveClassifier fully configured Cost Sensitive Classifier
 * @throws Exception 
 */
protected static CostSensitiveClassifier configureCostSensitiveClassifier(CostSensitiveClassifier costSensitiveClassifier,
		Instances data, String costMatrix) throws Exception {

	String[] CscOptions = {"-cost-matrix", costMatrix, "-S", "1"};
	String[] rankerOptions = {"-P",Integer.toString(data.numAttributes() - 1),"-T","-1.7976931348623157E308","-N","-1"};
	String[] smoOptions = {"-C", "1.0", "-L", "0.0010", "-P", "1.0E-12", "-N", "0", "-V", "-1", "-W", "1", "-K",
            PolyKernel.class.getName()+" -C 250007 -E 2.0"};
	
	InfoGainAttributeEval igAttEval = new InfoGainAttributeEval();
	Ranker ranker = new Ranker();
	ranker.setOptions(rankerOptions);
	
	AttributeSelection attSelect = new AttributeSelection(); 
	attSelect.setEvaluator(igAttEval);
	attSelect.setSearch(ranker);
	
	SMO smo = new SMO();
	smo.setOptions(smoOptions);
	
	FilteredClassifier filteredClsfr = new FilteredClassifier();
	filteredClsfr.setClassifier(smo);
	filteredClsfr.setFilter(attSelect);
	
	costSensitiveClassifier.setOptions(CscOptions); 
	costSensitiveClassifier.setClassifier(filteredClsfr);
	
	costSensitiveClassifier.buildClassifier(data);
	System.out.println("CostSensitiveClassifier built.");
	return costSensitiveClassifier;
}
 
开发者ID:UKPLab,项目名称:jlcl2015-pythagoras,代码行数:39,代码来源:ListMisclassifiedInstances.java

示例5: InformationGain

import weka.attributeSelection.Ranker; //导入依赖的package包/类
public InformationGain(Instances dataset) throws Exception{
	data = dataset;
	infoG = new InfoGainAttributeEval();
	infoG.buildEvaluator(data);
	filter = new AttributeSelection();
	search = new Ranker();
	search.setThreshold(0.0);
}
 
开发者ID:a-n-d-r-e-i,项目名称:seagull,代码行数:9,代码来源:InformationGain.java

示例6: getAttributeSelector

import weka.attributeSelection.Ranker; //导入依赖的package包/类
private static AttributeSelection getAttributeSelector(
		Instances trainingData) throws Exception {
	AttributeSelection selector = new AttributeSelection();
	InfoGainAttributeEval evaluator = new InfoGainAttributeEval();
	Ranker ranker = new Ranker();
	ranker.setNumToSelect(Math.min(500, trainingData.numAttributes() - 1));
	selector.setEvaluator(evaluator);
	selector.setSearch(ranker);
	selector.SelectAttributes(trainingData);
	return selector;
}
 
开发者ID:qcri-social,项目名称:AIDR,代码行数:12,代码来源:ModelFactory.java

示例7: getEvalResultbyChiSquare

import weka.attributeSelection.Ranker; //导入依赖的package包/类
/***
	 * <p>To get 10-fold cross validation in one single arff in <b>path</b></p>
	 * <p>Use C4.5 and <b>SMOTE</b>, combined with <b>Chi-Square</b> to classify the dataset.</p>
	 * @param path dataset path
	 * @throws Exception
	 */
	public static void getEvalResultbyChiSquare(String path, int index) throws Exception{
		
		Instances ins = DataSource.read(path);
		int numAttr = ins.numAttributes();
		ins.setClassIndex(numAttr - 1);
		
		/**chi-squared filter to process the whole dataset first*/
		ChiSquaredAttributeEval evall = new ChiSquaredAttributeEval();	
		Ranker ranker = new Ranker();
		AttributeSelection selector = new AttributeSelection();
		
		selector.setEvaluator(evall);
		selector.setSearch(ranker);
		selector.setInputFormat(ins);
		ins = Filter.useFilter(ins, selector);
		
		SMOTE smote = new SMOTE();
		smote.setInputFormat(ins);
		
		/** classifiers setting*/
		J48 j48 = new J48();
//		j48.setConfidenceFactor(0.4f);
		j48.buildClassifier(ins);

		FilteredClassifier fc = new FilteredClassifier();
		fc.setClassifier(j48);
		fc.setFilter(smote);
			
		Evaluation eval = new Evaluation(ins);	
		eval.crossValidateModel(fc, ins, 10, new Random(1));
		
//		System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(0), eval.recall(0), eval.fMeasure(0));
//		System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(1), eval.recall(1), eval.fMeasure(1));
//		System.out.printf(" %4.3f \n\n", (1-eval.errorRate()));
		results[index][0] = eval.precision(0);
		results[index][1] = eval.recall(0);
		results[index][2] = eval.fMeasure(0);
		results[index][3] = eval.precision(1);
		results[index][4] = eval.recall(1);
		results[index][5] = eval.fMeasure(1);
		results[index][6] = 1-eval.errorRate();
				
	}
 
开发者ID:Gu-Youngfeng,项目名称:CraTer,代码行数:50,代码来源:FeatureSelectionAve.java

示例8: getEvalResultbyInfoGain

import weka.attributeSelection.Ranker; //导入依赖的package包/类
/***
	 * <p>To get 10-fold cross validation in one single arff in <b>path</b></p>
	 * <p>Use C4.5 and <b>SMOTE</b>, combined with <b>Information Gain</b> to classify the dataset.</p>
	 * @param path dataset path
	 * @throws Exception
	 */
	public static void getEvalResultbyInfoGain(String path, int index) throws Exception{
		
		Instances ins = DataSource.read(path);
		int numAttr = ins.numAttributes();
		ins.setClassIndex(numAttr - 1);
		
		/**information gain filter to process the whole dataset first*/
		InfoGainAttributeEval evall = new InfoGainAttributeEval();
		Ranker ranker = new Ranker();
		AttributeSelection selector = new AttributeSelection();
		
		selector.setEvaluator(evall);
		selector.setSearch(ranker);
		selector.setInputFormat(ins);
		ins = Filter.useFilter(ins, selector);
		
		SMOTE smote = new SMOTE();
		smote.setInputFormat(ins);
		
		/** classifiers setting*/
		J48 j48 = new J48();
//		j48.setConfidenceFactor(0.4f);
		j48.buildClassifier(ins);

		FilteredClassifier fc = new FilteredClassifier();
		fc.setClassifier(j48);
		fc.setFilter(smote);
			
		Evaluation eval = new Evaluation(ins);	
		eval.crossValidateModel(fc, ins, 10, new Random(1));
		
//		System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(0), eval.recall(0), eval.fMeasure(0));
//		System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(1), eval.recall(1), eval.fMeasure(1));
//		System.out.printf(" %4.3f \n\n", (1-eval.errorRate()));
		results[index][0] = eval.precision(0);
		results[index][1] = eval.recall(0);
		results[index][2] = eval.fMeasure(0);
		results[index][3] = eval.precision(1);
		results[index][4] = eval.recall(1);
		results[index][5] = eval.fMeasure(1);
		results[index][6] = 1-eval.errorRate();
				
	}
 
开发者ID:Gu-Youngfeng,项目名称:CraTer,代码行数:50,代码来源:FeatureSelectionAve.java

示例9: getEvalResultbyGainRatio

import weka.attributeSelection.Ranker; //导入依赖的package包/类
/***
	 * <p>To get 10-fold cross validation in one single arff in <b>path</b></p>
	 * <p>Use C4.5 and <b>SMOTE</b>, combined with <b>Information Gain Ratio</b> to classify the dataset.</p>
	 * @param path dataset path
	 * @throws Exception
	 */
	public static void getEvalResultbyGainRatio(String path, int index) throws Exception{
		
		Instances ins = DataSource.read(path);
		int numAttr = ins.numAttributes();
		ins.setClassIndex(numAttr - 1);
		
		/**information gain ratio filter to process the whole dataset first*/
		GainRatioAttributeEval evall = new GainRatioAttributeEval();
		Ranker ranker = new Ranker();
		AttributeSelection selector = new AttributeSelection();
		
		selector.setEvaluator(evall);
		selector.setSearch(ranker);
		selector.setInputFormat(ins);
		ins = Filter.useFilter(ins, selector);
		
		SMOTE smote = new SMOTE();
		smote.setInputFormat(ins);
		
		/** classifiers setting*/
		J48 j48 = new J48();
//		j48.setConfidenceFactor(0.4f);
		j48.buildClassifier(ins);

		FilteredClassifier fc = new FilteredClassifier();
		fc.setClassifier(j48);
		fc.setFilter(smote);
			
		Evaluation eval = new Evaluation(ins);	
		eval.crossValidateModel(fc, ins, 10, new Random(1));
		
//		System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(0), eval.recall(0), eval.fMeasure(0));
//		System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(1), eval.recall(1), eval.fMeasure(1));
//		System.out.printf(" %4.3f \n\n", (1-eval.errorRate()));
		results[index][0] = eval.precision(0);
		results[index][1] = eval.recall(0);
		results[index][2] = eval.fMeasure(0);
		results[index][3] = eval.precision(1);
		results[index][4] = eval.recall(1);
		results[index][5] = eval.fMeasure(1);
		results[index][6] = 1-eval.errorRate();
				
	}
 
开发者ID:Gu-Youngfeng,项目名称:CraTer,代码行数:50,代码来源:FeatureSelectionAve.java

示例10: getEvalResultbyCorrelation

import weka.attributeSelection.Ranker; //导入依赖的package包/类
/***
	 * <p>To get 10-fold cross validation in one single arff in <b>path</b></p>
	 * <p>Use C4.5 and <b>SMOTE</b>, combined with <b>Correlation</b> to classify the dataset.</p>
	 * @param path dataset path
	 * @throws Exception
	 */
	public static void getEvalResultbyCorrelation(String path, int index) throws Exception{
		
		Instances ins = DataSource.read(path);
		int numAttr = ins.numAttributes();
		ins.setClassIndex(numAttr - 1);
		
		/** correlation filter to process the whole dataset first*/
		CorrelationAttributeEval evall = new CorrelationAttributeEval();
		Ranker ranker = new Ranker();
		AttributeSelection selector = new AttributeSelection();
		
		selector.setEvaluator(evall);
		selector.setSearch(ranker);
		selector.setInputFormat(ins);
		ins = Filter.useFilter(ins, selector);
		
		SMOTE smote = new SMOTE();
		smote.setInputFormat(ins);
		
		/** classifiers setting*/
		J48 j48 = new J48();
//		j48.setConfidenceFactor(0.4f);
		j48.buildClassifier(ins);

		FilteredClassifier fc = new FilteredClassifier();
		fc.setClassifier(j48);
		fc.setFilter(smote);
			
		Evaluation eval = new Evaluation(ins);	
		eval.crossValidateModel(fc, ins, 10, new Random(1));
		
//		System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(0), eval.recall(0), eval.fMeasure(0));
//		System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(1), eval.recall(1), eval.fMeasure(1));
//		System.out.printf(" %4.3f \n\n", (1-eval.errorRate()));
		results[index][0] = eval.precision(0);
		results[index][1] = eval.recall(0);
		results[index][2] = eval.fMeasure(0);
		results[index][3] = eval.precision(1);
		results[index][4] = eval.recall(1);
		results[index][5] = eval.fMeasure(1);
		results[index][6] = 1-eval.errorRate();
				
	}
 
开发者ID:Gu-Youngfeng,项目名称:CraTer,代码行数:50,代码来源:FeatureSelectionAve.java

示例11: getEvalResultbyReliefF

import weka.attributeSelection.Ranker; //导入依赖的package包/类
/***
	 * <p>To get 10-fold cross validation in one single arff in <b>path</b></p>
	 * <p>Use C4.5 and <b>SMOTE</b>, combined with <b>ReliefF</b> to classify the dataset.</p>
	 * @param path dataset path
	 * @throws Exception
	 */
	public static void getEvalResultbyReliefF(String path, int index) throws Exception{
		
		Instances ins = DataSource.read(path);
		int numAttr = ins.numAttributes();
		ins.setClassIndex(numAttr - 1);
		
		/** correlation filter to process the whole dataset first*/
		ReliefFAttributeEval evall = new ReliefFAttributeEval();
		Ranker ranker = new Ranker();
		AttributeSelection selector = new AttributeSelection();
		
		selector.setEvaluator(evall);
		selector.setSearch(ranker);
		selector.setInputFormat(ins);
		ins = Filter.useFilter(ins, selector);
		
		SMOTE smote = new SMOTE();
		smote.setInputFormat(ins);
		
		/** classifiers setting*/
		J48 j48 = new J48();
//		j48.setConfidenceFactor(0.4f);
		j48.buildClassifier(ins);

		FilteredClassifier fc = new FilteredClassifier();
		fc.setClassifier(j48);
		fc.setFilter(smote);
			
		Evaluation eval = new Evaluation(ins);	
		eval.crossValidateModel(fc, ins, 10, new Random(1));
		
//		System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(0), eval.recall(0), eval.fMeasure(0));
//		System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(1), eval.recall(1), eval.fMeasure(1));
//		System.out.printf(" %4.3f \n\n", (1-eval.errorRate()));
		results[index][0] = eval.precision(0);
		results[index][1] = eval.recall(0);
		results[index][2] = eval.fMeasure(0);
		results[index][3] = eval.precision(1);
		results[index][4] = eval.recall(1);
		results[index][5] = eval.fMeasure(1);
		results[index][6] = 1-eval.errorRate();
				
	}
 
开发者ID:Gu-Youngfeng,项目名称:CraTer,代码行数:50,代码来源:FeatureSelectionAve.java

示例12: showFolds

import weka.attributeSelection.Ranker; //导入依赖的package包/类
/***
	 * <p>Using Feature Selection method to get 10 folds results in the given project</p>
	 * @param path project path
	 * @param sel label means we use the Feature Selection method
	 * @throws Exception 
	 */
	public static void showFolds(String path, int k, int flag) throws Exception{
			
		Instances data1 = DataSource.read(path);
		data1.setClassIndex(data1.numAttributes()-1);
		if(!data1.classAttribute().isNominal()) // in case of noisy data, return
			return;
		
		/** Feature Selection: Correlation */
		CorrelationAttributeEval evall = new CorrelationAttributeEval();
		Ranker ranker = new Ranker();
		AttributeSelection selector = new AttributeSelection();		
		selector.setEvaluator(evall);
		selector.setSearch(ranker);
		selector.setInputFormat(data1);
		data1 = Filter.useFilter(data1, selector);

		/** Randomize and stratify the dataset*/
		data1.randomize(new Random(1)); 	
		data1.stratify(10);	// 10 folds
		
		double[][] matrix = new double[10][7];	
		
		for(int i=0; i<10; i++){ // To calculate the results in each fold
			
			Instances test = data1.testCV(10, i);
			Instances train = data1.trainCV(10, i);
			
			/** SMOTE */
			SMOTE smote = new SMOTE();
			smote.setInputFormat(train);
			train = Filter.useFilter(train, smote);

			/** C4.5 */
			J48 rf = new J48();
//			RandomForest rf = new RandomForest();
//			rf.setNumIterations(300);
			rf.buildClassifier(train);
			
			Evaluation eval = new Evaluation(train);
			eval.evaluateModel(rf, test); 
					
			matrix[i][6] = 1-eval.errorRate();
			
			matrix[i][0] = eval.precision(0);
			
			matrix[i][1] = eval.recall(0);
			
			matrix[i][2] = eval.fMeasure(0);
			
			matrix[i][3] = eval.precision(1);
			
			matrix[i][4] = eval.recall(1);
			
			matrix[i][5] = eval.fMeasure(1);
			
		}
		
		for(int i=0;i<10;i++){
			for(int j=0;j<7;j++){
				System.out.printf("%15.8f", matrix[i][j]);
			}
			System.out.println("");
		}
	}
 
开发者ID:Gu-Youngfeng,项目名称:CraTer,代码行数:71,代码来源:FoldResultsAve.java


注:本文中的weka.attributeSelection.Ranker类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。