本文整理汇总了Java中weka.attributeSelection.Ranker类的典型用法代码示例。如果您正苦于以下问题:Java Ranker类的具体用法?Java Ranker怎么用?Java Ranker使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
Ranker类属于weka.attributeSelection包,在下文中一共展示了Ranker类的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: preProcessData
import weka.attributeSelection.Ranker; //导入依赖的package包/类
public static Instances preProcessData(Instances data) throws Exception{
/*
* Remove useless attributes
*/
RemoveUseless removeUseless = new RemoveUseless();
removeUseless.setOptions(new String[] { "-M", "99" }); // threshold
removeUseless.setInputFormat(data);
data = Filter.useFilter(data, removeUseless);
/*
* Remove useless attributes
*/
ReplaceMissingValues fixMissing = new ReplaceMissingValues();
fixMissing.setInputFormat(data);
data = Filter.useFilter(data, fixMissing);
/*
* Remove useless attributes
*/
Discretize discretizeNumeric = new Discretize();
discretizeNumeric.setOptions(new String[] {
"-O",
"-M", "-1.0",
"-B", "4", // no of bins
"-R", "first-last"}); //range of attributes
fixMissing.setInputFormat(data);
data = Filter.useFilter(data, fixMissing);
/*
* Select only informative attributes
*/
InfoGainAttributeEval eval = new InfoGainAttributeEval();
Ranker search = new Ranker();
search.setOptions(new String[] { "-T", "0.001" }); // information gain threshold
AttributeSelection attSelect = new AttributeSelection();
attSelect.setEvaluator(eval);
attSelect.setSearch(search);
// apply attribute selection
attSelect.SelectAttributes(data);
// remove the attributes not selected in the last run
data = attSelect.reduceDimensionality(data);
return data;
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-End-to-Endguide-for-Java-developers,代码行数:52,代码来源:KddCup.java
示例2: InfoGainAttributeEval
import weka.attributeSelection.Ranker; //导入依赖的package包/类
public static AttributeSelection InfoGainAttributeEval(Instances data) throws Exception{
AttributeSelection filter = new AttributeSelection();
InfoGainAttributeEval evaluator = new InfoGainAttributeEval();
filter.setEvaluator(evaluator);
Ranker search = new Ranker();
search.setThreshold(0);
filter.setSearch(search);
filter.setInputFormat(data);
return filter;
}
示例3: GainRatioAttributeEval
import weka.attributeSelection.Ranker; //导入依赖的package包/类
public static AttributeSelection GainRatioAttributeEval(Instances data, int n) throws Exception{
AttributeSelection filter = new AttributeSelection();
GainRatioAttributeEval evaluator = new GainRatioAttributeEval();
filter.setEvaluator(evaluator);
Ranker search = new Ranker();
search.setNumToSelect(n);
filter.setSearch(search);
filter.setInputFormat(data);
return filter;
}
示例4: configureCostSensitiveClassifier
import weka.attributeSelection.Ranker; //导入依赖的package包/类
/**
* Sets a default CostSensitiveClassifier with SMO. The settings of this method must be modified if used for another project.
* @param data weka data containing instances and attributes
* @param costSensitiveClassifier unconfigured Cost Sensitive Classifier
* @param costMatrix Cost Matrix
* @return CostSensitiveClassifier fully configured Cost Sensitive Classifier
* @throws Exception
*/
protected static CostSensitiveClassifier configureCostSensitiveClassifier(CostSensitiveClassifier costSensitiveClassifier,
Instances data, String costMatrix) throws Exception {
String[] CscOptions = {"-cost-matrix", costMatrix, "-S", "1"};
String[] rankerOptions = {"-P",Integer.toString(data.numAttributes() - 1),"-T","-1.7976931348623157E308","-N","-1"};
String[] smoOptions = {"-C", "1.0", "-L", "0.0010", "-P", "1.0E-12", "-N", "0", "-V", "-1", "-W", "1", "-K",
PolyKernel.class.getName()+" -C 250007 -E 2.0"};
InfoGainAttributeEval igAttEval = new InfoGainAttributeEval();
Ranker ranker = new Ranker();
ranker.setOptions(rankerOptions);
AttributeSelection attSelect = new AttributeSelection();
attSelect.setEvaluator(igAttEval);
attSelect.setSearch(ranker);
SMO smo = new SMO();
smo.setOptions(smoOptions);
FilteredClassifier filteredClsfr = new FilteredClassifier();
filteredClsfr.setClassifier(smo);
filteredClsfr.setFilter(attSelect);
costSensitiveClassifier.setOptions(CscOptions);
costSensitiveClassifier.setClassifier(filteredClsfr);
costSensitiveClassifier.buildClassifier(data);
System.out.println("CostSensitiveClassifier built.");
return costSensitiveClassifier;
}
示例5: InformationGain
import weka.attributeSelection.Ranker; //导入依赖的package包/类
public InformationGain(Instances dataset) throws Exception{
data = dataset;
infoG = new InfoGainAttributeEval();
infoG.buildEvaluator(data);
filter = new AttributeSelection();
search = new Ranker();
search.setThreshold(0.0);
}
示例6: getAttributeSelector
import weka.attributeSelection.Ranker; //导入依赖的package包/类
private static AttributeSelection getAttributeSelector(
Instances trainingData) throws Exception {
AttributeSelection selector = new AttributeSelection();
InfoGainAttributeEval evaluator = new InfoGainAttributeEval();
Ranker ranker = new Ranker();
ranker.setNumToSelect(Math.min(500, trainingData.numAttributes() - 1));
selector.setEvaluator(evaluator);
selector.setSearch(ranker);
selector.SelectAttributes(trainingData);
return selector;
}
示例7: getEvalResultbyChiSquare
import weka.attributeSelection.Ranker; //导入依赖的package包/类
/***
* <p>To get 10-fold cross validation in one single arff in <b>path</b></p>
* <p>Use C4.5 and <b>SMOTE</b>, combined with <b>Chi-Square</b> to classify the dataset.</p>
* @param path dataset path
* @throws Exception
*/
public static void getEvalResultbyChiSquare(String path, int index) throws Exception{
Instances ins = DataSource.read(path);
int numAttr = ins.numAttributes();
ins.setClassIndex(numAttr - 1);
/**chi-squared filter to process the whole dataset first*/
ChiSquaredAttributeEval evall = new ChiSquaredAttributeEval();
Ranker ranker = new Ranker();
AttributeSelection selector = new AttributeSelection();
selector.setEvaluator(evall);
selector.setSearch(ranker);
selector.setInputFormat(ins);
ins = Filter.useFilter(ins, selector);
SMOTE smote = new SMOTE();
smote.setInputFormat(ins);
/** classifiers setting*/
J48 j48 = new J48();
// j48.setConfidenceFactor(0.4f);
j48.buildClassifier(ins);
FilteredClassifier fc = new FilteredClassifier();
fc.setClassifier(j48);
fc.setFilter(smote);
Evaluation eval = new Evaluation(ins);
eval.crossValidateModel(fc, ins, 10, new Random(1));
// System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(0), eval.recall(0), eval.fMeasure(0));
// System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(1), eval.recall(1), eval.fMeasure(1));
// System.out.printf(" %4.3f \n\n", (1-eval.errorRate()));
results[index][0] = eval.precision(0);
results[index][1] = eval.recall(0);
results[index][2] = eval.fMeasure(0);
results[index][3] = eval.precision(1);
results[index][4] = eval.recall(1);
results[index][5] = eval.fMeasure(1);
results[index][6] = 1-eval.errorRate();
}
示例8: getEvalResultbyInfoGain
import weka.attributeSelection.Ranker; //导入依赖的package包/类
/***
* <p>To get 10-fold cross validation in one single arff in <b>path</b></p>
* <p>Use C4.5 and <b>SMOTE</b>, combined with <b>Information Gain</b> to classify the dataset.</p>
* @param path dataset path
* @throws Exception
*/
public static void getEvalResultbyInfoGain(String path, int index) throws Exception{
Instances ins = DataSource.read(path);
int numAttr = ins.numAttributes();
ins.setClassIndex(numAttr - 1);
/**information gain filter to process the whole dataset first*/
InfoGainAttributeEval evall = new InfoGainAttributeEval();
Ranker ranker = new Ranker();
AttributeSelection selector = new AttributeSelection();
selector.setEvaluator(evall);
selector.setSearch(ranker);
selector.setInputFormat(ins);
ins = Filter.useFilter(ins, selector);
SMOTE smote = new SMOTE();
smote.setInputFormat(ins);
/** classifiers setting*/
J48 j48 = new J48();
// j48.setConfidenceFactor(0.4f);
j48.buildClassifier(ins);
FilteredClassifier fc = new FilteredClassifier();
fc.setClassifier(j48);
fc.setFilter(smote);
Evaluation eval = new Evaluation(ins);
eval.crossValidateModel(fc, ins, 10, new Random(1));
// System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(0), eval.recall(0), eval.fMeasure(0));
// System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(1), eval.recall(1), eval.fMeasure(1));
// System.out.printf(" %4.3f \n\n", (1-eval.errorRate()));
results[index][0] = eval.precision(0);
results[index][1] = eval.recall(0);
results[index][2] = eval.fMeasure(0);
results[index][3] = eval.precision(1);
results[index][4] = eval.recall(1);
results[index][5] = eval.fMeasure(1);
results[index][6] = 1-eval.errorRate();
}
示例9: getEvalResultbyGainRatio
import weka.attributeSelection.Ranker; //导入依赖的package包/类
/***
* <p>To get 10-fold cross validation in one single arff in <b>path</b></p>
* <p>Use C4.5 and <b>SMOTE</b>, combined with <b>Information Gain Ratio</b> to classify the dataset.</p>
* @param path dataset path
* @throws Exception
*/
public static void getEvalResultbyGainRatio(String path, int index) throws Exception{
Instances ins = DataSource.read(path);
int numAttr = ins.numAttributes();
ins.setClassIndex(numAttr - 1);
/**information gain ratio filter to process the whole dataset first*/
GainRatioAttributeEval evall = new GainRatioAttributeEval();
Ranker ranker = new Ranker();
AttributeSelection selector = new AttributeSelection();
selector.setEvaluator(evall);
selector.setSearch(ranker);
selector.setInputFormat(ins);
ins = Filter.useFilter(ins, selector);
SMOTE smote = new SMOTE();
smote.setInputFormat(ins);
/** classifiers setting*/
J48 j48 = new J48();
// j48.setConfidenceFactor(0.4f);
j48.buildClassifier(ins);
FilteredClassifier fc = new FilteredClassifier();
fc.setClassifier(j48);
fc.setFilter(smote);
Evaluation eval = new Evaluation(ins);
eval.crossValidateModel(fc, ins, 10, new Random(1));
// System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(0), eval.recall(0), eval.fMeasure(0));
// System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(1), eval.recall(1), eval.fMeasure(1));
// System.out.printf(" %4.3f \n\n", (1-eval.errorRate()));
results[index][0] = eval.precision(0);
results[index][1] = eval.recall(0);
results[index][2] = eval.fMeasure(0);
results[index][3] = eval.precision(1);
results[index][4] = eval.recall(1);
results[index][5] = eval.fMeasure(1);
results[index][6] = 1-eval.errorRate();
}
示例10: getEvalResultbyCorrelation
import weka.attributeSelection.Ranker; //导入依赖的package包/类
/***
* <p>To get 10-fold cross validation in one single arff in <b>path</b></p>
* <p>Use C4.5 and <b>SMOTE</b>, combined with <b>Correlation</b> to classify the dataset.</p>
* @param path dataset path
* @throws Exception
*/
public static void getEvalResultbyCorrelation(String path, int index) throws Exception{
Instances ins = DataSource.read(path);
int numAttr = ins.numAttributes();
ins.setClassIndex(numAttr - 1);
/** correlation filter to process the whole dataset first*/
CorrelationAttributeEval evall = new CorrelationAttributeEval();
Ranker ranker = new Ranker();
AttributeSelection selector = new AttributeSelection();
selector.setEvaluator(evall);
selector.setSearch(ranker);
selector.setInputFormat(ins);
ins = Filter.useFilter(ins, selector);
SMOTE smote = new SMOTE();
smote.setInputFormat(ins);
/** classifiers setting*/
J48 j48 = new J48();
// j48.setConfidenceFactor(0.4f);
j48.buildClassifier(ins);
FilteredClassifier fc = new FilteredClassifier();
fc.setClassifier(j48);
fc.setFilter(smote);
Evaluation eval = new Evaluation(ins);
eval.crossValidateModel(fc, ins, 10, new Random(1));
// System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(0), eval.recall(0), eval.fMeasure(0));
// System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(1), eval.recall(1), eval.fMeasure(1));
// System.out.printf(" %4.3f \n\n", (1-eval.errorRate()));
results[index][0] = eval.precision(0);
results[index][1] = eval.recall(0);
results[index][2] = eval.fMeasure(0);
results[index][3] = eval.precision(1);
results[index][4] = eval.recall(1);
results[index][5] = eval.fMeasure(1);
results[index][6] = 1-eval.errorRate();
}
示例11: getEvalResultbyReliefF
import weka.attributeSelection.Ranker; //导入依赖的package包/类
/***
* <p>To get 10-fold cross validation in one single arff in <b>path</b></p>
* <p>Use C4.5 and <b>SMOTE</b>, combined with <b>ReliefF</b> to classify the dataset.</p>
* @param path dataset path
* @throws Exception
*/
public static void getEvalResultbyReliefF(String path, int index) throws Exception{
Instances ins = DataSource.read(path);
int numAttr = ins.numAttributes();
ins.setClassIndex(numAttr - 1);
/** correlation filter to process the whole dataset first*/
ReliefFAttributeEval evall = new ReliefFAttributeEval();
Ranker ranker = new Ranker();
AttributeSelection selector = new AttributeSelection();
selector.setEvaluator(evall);
selector.setSearch(ranker);
selector.setInputFormat(ins);
ins = Filter.useFilter(ins, selector);
SMOTE smote = new SMOTE();
smote.setInputFormat(ins);
/** classifiers setting*/
J48 j48 = new J48();
// j48.setConfidenceFactor(0.4f);
j48.buildClassifier(ins);
FilteredClassifier fc = new FilteredClassifier();
fc.setClassifier(j48);
fc.setFilter(smote);
Evaluation eval = new Evaluation(ins);
eval.crossValidateModel(fc, ins, 10, new Random(1));
// System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(0), eval.recall(0), eval.fMeasure(0));
// System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(1), eval.recall(1), eval.fMeasure(1));
// System.out.printf(" %4.3f \n\n", (1-eval.errorRate()));
results[index][0] = eval.precision(0);
results[index][1] = eval.recall(0);
results[index][2] = eval.fMeasure(0);
results[index][3] = eval.precision(1);
results[index][4] = eval.recall(1);
results[index][5] = eval.fMeasure(1);
results[index][6] = 1-eval.errorRate();
}
示例12: showFolds
import weka.attributeSelection.Ranker; //导入依赖的package包/类
/***
* <p>Using Feature Selection method to get 10 folds results in the given project</p>
* @param path project path
* @param sel label means we use the Feature Selection method
* @throws Exception
*/
public static void showFolds(String path, int k, int flag) throws Exception{
Instances data1 = DataSource.read(path);
data1.setClassIndex(data1.numAttributes()-1);
if(!data1.classAttribute().isNominal()) // in case of noisy data, return
return;
/** Feature Selection: Correlation */
CorrelationAttributeEval evall = new CorrelationAttributeEval();
Ranker ranker = new Ranker();
AttributeSelection selector = new AttributeSelection();
selector.setEvaluator(evall);
selector.setSearch(ranker);
selector.setInputFormat(data1);
data1 = Filter.useFilter(data1, selector);
/** Randomize and stratify the dataset*/
data1.randomize(new Random(1));
data1.stratify(10); // 10 folds
double[][] matrix = new double[10][7];
for(int i=0; i<10; i++){ // To calculate the results in each fold
Instances test = data1.testCV(10, i);
Instances train = data1.trainCV(10, i);
/** SMOTE */
SMOTE smote = new SMOTE();
smote.setInputFormat(train);
train = Filter.useFilter(train, smote);
/** C4.5 */
J48 rf = new J48();
// RandomForest rf = new RandomForest();
// rf.setNumIterations(300);
rf.buildClassifier(train);
Evaluation eval = new Evaluation(train);
eval.evaluateModel(rf, test);
matrix[i][6] = 1-eval.errorRate();
matrix[i][0] = eval.precision(0);
matrix[i][1] = eval.recall(0);
matrix[i][2] = eval.fMeasure(0);
matrix[i][3] = eval.precision(1);
matrix[i][4] = eval.recall(1);
matrix[i][5] = eval.fMeasure(1);
}
for(int i=0;i<10;i++){
for(int j=0;j<7;j++){
System.out.printf("%15.8f", matrix[i][j]);
}
System.out.println("");
}
}