当前位置: 首页>>代码示例>>Java>>正文


Java GainRatioAttributeEval类代码示例

本文整理汇总了Java中weka.attributeSelection.GainRatioAttributeEval的典型用法代码示例。如果您正苦于以下问题:Java GainRatioAttributeEval类的具体用法?Java GainRatioAttributeEval怎么用?Java GainRatioAttributeEval使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


GainRatioAttributeEval类属于weka.attributeSelection包,在下文中一共展示了GainRatioAttributeEval类的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: GainRatioAttributeEval

import weka.attributeSelection.GainRatioAttributeEval; //导入依赖的package包/类
public static AttributeSelection GainRatioAttributeEval(Instances data, int n) throws Exception{
    AttributeSelection filter = new AttributeSelection();
    GainRatioAttributeEval evaluator = new GainRatioAttributeEval();
    filter.setEvaluator(evaluator);
    Ranker search = new Ranker();
    search.setNumToSelect(n);
    filter.setSearch(search);
    filter.setInputFormat(data);
    
    return filter;
}
 
开发者ID:amineabdaoui,项目名称:french-sentiment-classification,代码行数:12,代码来源:SelectionAttributs.java

示例2: getEvalResultbyGainRatio

import weka.attributeSelection.GainRatioAttributeEval; //导入依赖的package包/类
/***
	 * <p>To get 10-fold cross validation in one single arff in <b>path</b></p>
	 * <p>Use C4.5 and <b>SMOTE</b>, combined with <b>Information Gain Ratio</b> to classify the dataset.</p>
	 * @param path dataset path
	 * @throws Exception
	 */
	public static void getEvalResultbyGainRatio(String path, int index) throws Exception{
		
		Instances ins = DataSource.read(path);
		int numAttr = ins.numAttributes();
		ins.setClassIndex(numAttr - 1);
		
		/**information gain ratio filter to process the whole dataset first*/
		GainRatioAttributeEval evall = new GainRatioAttributeEval();
		Ranker ranker = new Ranker();
		AttributeSelection selector = new AttributeSelection();
		
		selector.setEvaluator(evall);
		selector.setSearch(ranker);
		selector.setInputFormat(ins);
		ins = Filter.useFilter(ins, selector);
		
		SMOTE smote = new SMOTE();
		smote.setInputFormat(ins);
		
		/** classifiers setting*/
		J48 j48 = new J48();
//		j48.setConfidenceFactor(0.4f);
		j48.buildClassifier(ins);

		FilteredClassifier fc = new FilteredClassifier();
		fc.setClassifier(j48);
		fc.setFilter(smote);
			
		Evaluation eval = new Evaluation(ins);	
		eval.crossValidateModel(fc, ins, 10, new Random(1));
		
//		System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(0), eval.recall(0), eval.fMeasure(0));
//		System.out.printf(" %4.3f %4.3f %4.3f", eval.precision(1), eval.recall(1), eval.fMeasure(1));
//		System.out.printf(" %4.3f \n\n", (1-eval.errorRate()));
		results[index][0] = eval.precision(0);
		results[index][1] = eval.recall(0);
		results[index][2] = eval.fMeasure(0);
		results[index][3] = eval.precision(1);
		results[index][4] = eval.recall(1);
		results[index][5] = eval.fMeasure(1);
		results[index][6] = 1-eval.errorRate();
				
	}
 
开发者ID:Gu-Youngfeng,项目名称:CraTer,代码行数:50,代码来源:FeatureSelectionAve.java


注:本文中的weka.attributeSelection.GainRatioAttributeEval类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。