本文整理汇总了Java中sun.awt.geom.Curve类的典型用法代码示例。如果您正苦于以下问题:Java Curve类的具体用法?Java Curve怎么用?Java Curve使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
Curve类属于sun.awt.geom包,在下文中一共展示了Curve类的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: contains
import sun.awt.geom.Curve; //导入依赖的package包/类
/**
* Tests if the specified coordinates are inside the closed
* boundary of the specified {@link PathIterator}.
* <p>
* This method provides a basic facility for implementors of
* the {@link Shape} interface to implement support for the
* {@link Shape#contains(double, double)} method.
*
* @param pi the specified {@code PathIterator}
* @param x the specified X coordinate
* @param y the specified Y coordinate
* @return {@code true} if the specified coordinates are inside the
* specified {@code PathIterator}; {@code false} otherwise
* @since 1.6
*/
public static boolean contains(PathIterator pi, double x, double y) {
if (x * 0.0 + y * 0.0 == 0.0) {
/* N * 0.0 is 0.0 only if N is finite.
* Here we know that both x and y are finite.
*/
int mask = (pi.getWindingRule() == WIND_NON_ZERO ? -1 : 1);
int cross = Curve.pointCrossingsForPath(pi, x, y);
return ((cross & mask) != 0);
} else {
/* Either x or y was infinite or NaN.
* A NaN always produces a negative response to any test
* and Infinity values cannot be "inside" any path so
* they should return false as well.
*/
return false;
}
}
示例2: intersects
import sun.awt.geom.Curve; //导入依赖的package包/类
/**
* {@inheritDoc}
* <p>
* This method object may conservatively return true in
* cases where the specified rectangular area intersects a
* segment of the path, but that segment does not represent a
* boundary between the interior and exterior of the path.
* Such a case may occur if some set of segments of the
* path are retraced in the reverse direction such that the
* two sets of segments cancel each other out without any
* interior area between them.
* To determine whether segments represent true boundaries of
* the interior of the path would require extensive calculations
* involving all of the segments of the path and the winding
* rule and are thus beyond the scope of this implementation.
*
* @since 1.6
*/
public final boolean intersects(double x, double y, double w, double h) {
if (java.lang.Double.isNaN(x+w) || java.lang.Double.isNaN(y+h)) {
/* [xy]+[wh] is NaN if any of those values are NaN,
* or if adding the two together would produce NaN
* by virtue of adding opposing Infinte values.
* Since we need to add them below, their sum must
* not be NaN.
* We return false because NaN always produces a
* negative response to tests
*/
return false;
}
if (w <= 0 || h <= 0) {
return false;
}
int mask = (windingRule == WIND_NON_ZERO ? -1 : 2);
int crossings = rectCrossings(x, y, x+w, y+h);
return (crossings == Curve.RECT_INTERSECTS ||
(crossings & mask) != 0);
}
示例3: isRectangular
import sun.awt.geom.Curve; //导入依赖的package包/类
/**
* Tests whether this <code>Area</code> is rectangular in shape.
* @return <code>true</code> if the geometry of this
* <code>Area</code> is rectangular in shape; <code>false</code>
* otherwise.
* @since 1.2
*/
public boolean isRectangular() {
int size = curves.size();
if (size == 0) {
return true;
}
if (size > 3) {
return false;
}
Curve c1 = (Curve) curves.get(1);
Curve c2 = (Curve) curves.get(2);
if (c1.getOrder() != 1 || c2.getOrder() != 1) {
return false;
}
if (c1.getXTop() != c1.getXBot() || c2.getXTop() != c2.getXBot()) {
return false;
}
if (c1.getYTop() != c2.getYTop() || c1.getYBot() != c2.getYBot()) {
// One might be able to prove that this is impossible...
return false;
}
return true;
}
示例4: contains
import sun.awt.geom.Curve; //导入依赖的package包/类
/**
* {@inheritDoc}
* @since 1.2
*/
public boolean contains(double x, double y) {
if (!(x * 0.0 + y * 0.0 == 0.0)) {
/* Either x or y was infinite or NaN.
* A NaN always produces a negative response to any test
* and Infinity values cannot be "inside" any path so
* they should return false as well.
*/
return false;
}
// We count the "Y" crossings to determine if the point is
// inside the curve bounded by its closing line.
double x1 = getX1();
double y1 = getY1();
double x2 = getX2();
double y2 = getY2();
int crossings =
(Curve.pointCrossingsForLine(x, y, x1, y1, x2, y2) +
Curve.pointCrossingsForCubic(x, y,
x1, y1,
getCtrlX1(), getCtrlY1(),
getCtrlX2(), getCtrlY2(),
x2, y2, 0));
return ((crossings & 1) == 1);
}
示例5: rectCrossings
import sun.awt.geom.Curve; //导入依赖的package包/类
private int rectCrossings(double x, double y, double w, double h) {
int crossings = 0;
if (!(getX1() == getX2() && getY1() == getY2())) {
crossings = Curve.rectCrossingsForLine(crossings,
x, y,
x+w, y+h,
getX1(), getY1(),
getX2(), getY2());
if (crossings == Curve.RECT_INTERSECTS) {
return crossings;
}
}
// we call this with the curve's direction reversed, because we wanted
// to call rectCrossingsForLine first, because it's cheaper.
return Curve.rectCrossingsForCubic(crossings,
x, y,
x+w, y+h,
getX2(), getY2(),
getCtrlX2(), getCtrlY2(),
getCtrlX1(), getCtrlY1(),
getX1(), getY1(), 0);
}
示例6: isRectangular
import sun.awt.geom.Curve; //导入依赖的package包/类
/**
* Tests whether this {@code Area} is rectangular in shape.
* @return {@code true} if the geometry of this
* {@code Area} is rectangular in shape; {@code false}
* otherwise.
* @since 1.2
*/
public boolean isRectangular() {
int size = curves.size();
if (size == 0) {
return true;
}
if (size > 3) {
return false;
}
Curve c1 = curves.get(1);
Curve c2 = curves.get(2);
if (c1.getOrder() != 1 || c2.getOrder() != 1) {
return false;
}
if (c1.getXTop() != c1.getXBot() || c2.getXTop() != c2.getXBot()) {
return false;
}
if (c1.getYTop() != c2.getYTop() || c1.getYBot() != c2.getYBot()) {
// One might be able to prove that this is impossible...
return false;
}
return true;
}