本文整理汇总了Java中org.tensorflow.Output类的典型用法代码示例。如果您正苦于以下问题:Java Output类的具体用法?Java Output怎么用?Java Output使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
Output类属于org.tensorflow包,在下文中一共展示了Output类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: LabelImageTensorflowInputConverter
import org.tensorflow.Output; //导入依赖的package包/类
public LabelImageTensorflowInputConverter() {
graph = new Graph();
GraphBuilder b = new GraphBuilder(graph);
// Some constants specific to the pre-trained model at:
// https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
// - The model was trained with images scaled to 224x224 pixels.
// - The colors, represented as R, G, B in 1-byte each were converted to
// float using (value - Mean)/Scale.
final int H = 224;
final int W = 224;
final float mean = 117f;
final float scale = 1f;
final Output input = b.placeholder("input", DataType.STRING);
graphOutput =
b.div(
b.sub(
b.resizeBilinear(
b.expandDims(
b.cast(b.decodeJpeg(input, 3), DataType.FLOAT),
b.constant("make_batch", 0)),
b.constant("size", new int[] {H, W})),
b.constant("mean", mean)),
b.constant("scale", scale));
}
开发者ID:tzolov,项目名称:tensorflow-spring-cloud-stream-app-starters,代码行数:27,代码来源:LabelImageTensorflowInputConverter.java
示例2: constructAndExecuteGraphToNormalizeImage
import org.tensorflow.Output; //导入依赖的package包/类
private Tensor constructAndExecuteGraphToNormalizeImage(byte[] imageBytes) {
try (Graph g = new Graph()) {
GraphBuilder b = new GraphBuilder(g);
// Some constants specific to the pre-trained model at:
// https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
//
// - The model was trained with images scaled to 224x224 pixels.
// - The colors, represented as R, G, B in 1-byte each were
// converted to
// float using (value - Mean)/Scale.
final int H = 224;
final int W = 224;
final float mean = 117f;
final float scale = 1f;
// Since the graph is being constructed once per execution here, we
// can use a constant for the
// input image. If the graph were to be re-used for multiple input
// images, a placeholder would
// have been more appropriate.
final Output input = b.constant("input", imageBytes);
final Output output = b
.div(b.sub(
b.resizeBilinear(b.expandDims(b.cast(b.decodeJpeg(input, 3), DataType.FLOAT),
b.constant("make_batch", 0)), b.constant("size", new int[] { H, W })),
b.constant("mean", mean)), b.constant("scale", scale));
try (Session s = new Session(g)) {
return s.runner().fetch(output.op().name()).run().get(0);
}
}
}
示例3: constructAndExecuteGraphToNormalizeImage
import org.tensorflow.Output; //导入依赖的package包/类
private static Tensor constructAndExecuteGraphToNormalizeImage(byte[] imageBytes) {
try (Graph g = new Graph()) {
GraphBuilder b = new GraphBuilder(g);
// Some constants specific to the pre-trained model at:
// https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
//
// - The model was trained with images scaled to 224x224 pixels.
// - The colors, represented as R, G, B in 1-byte each were converted to
// float using (value - Mean)/Scale.
final int H = 224;
final int W = 224;
final float mean = 117f;
final float scale = 1f;
// Since the graph is being constructed once per execution here, we can use a
// constant for the
// input image. If the graph were to be re-used for multiple input images, a
// placeholder would
// have been more appropriate.
final Output input = b.constant("input", imageBytes);
final Output output = b
.div(b.sub(
b.resizeBilinear(b.expandDims(b.cast(b.decodeJpeg(input, 3), DataType.FLOAT),
b.constant("make_batch", 0)), b.constant("size", new int[] { H, W })),
b.constant("mean", mean)), b.constant("scale", scale));
try (Session s = new Session(g)) {
return s.runner().fetch(output.op().name()).run().get(0);
}
}
}
示例4: constructAndExecuteGraphToNormalizeRGBImage
import org.tensorflow.Output; //导入依赖的package包/类
public static Tensor<Float> constructAndExecuteGraphToNormalizeRGBImage(byte[] imageBytes, int W, int H, float mean, float scale) {
try (Graph g = new Graph()) {
GraphBuilder b = new GraphBuilder(g);
// Some constants specific to the pre-trained model at:
// https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
//
// - The model was trained with images scaled to 224x224 pixels.
// - The colors, represented as R, G, B in 1-byte each were converted to
// float using (value - Mean)/Scale.
// final int H = 224;
// final int W = 224;
// final float mean = 117f;
// final float scale = 1f;
// Since the graph is being constructed once per execution here, we can use a constant for the
// input image. If the graph were to be re-used for multiple input images, a placeholder would
// have been more appropriate.
final Output<String> input = b.constant("input", imageBytes);
final Output<Float> output
= b.div(
b.sub(
b.resizeBilinear(
b.expandDims(
b.cast(b.decodeJpeg(input, 3), Float.class),
b.constant("make_batch", 0)),
b.constant("size", new int[]{H, W})),
b.constant("mean", mean)),
b.constant("scale", scale));
try (Session s = new Session(g)) {
return s.runner().fetch(output.op().name()).run().get(0).expect(Float.class);
}
}
}
示例5: constructAndExecuteGraphToNormalizeImage
import org.tensorflow.Output; //导入依赖的package包/类
private static Tensor<Float> constructAndExecuteGraphToNormalizeImage(byte[] imageBytes) {
try (Graph g = new Graph()) {
GraphBuilder b = new GraphBuilder(g);
// Some constants specific to the pre-trained model at:
// https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
//
// - The model was trained with images scaled to 224x224 pixels.
// - The colors, represented as R, G, B in 1-byte each were converted to
// float using (value - Mean)/Scale.
final int H = 224;
final int W = 224;
final float mean = 117f;
final float scale = 1f;
// Since the graph is being constructed once per execution here, we can use a constant for the
// input image. If the graph were to be re-used for multiple input images, a placeholder would
// have been more appropriate.
final Output<String> input = b.constant("input", imageBytes);
final Output<Float> output =
b.div(
b.sub(
b.resizeBilinear(
b.expandDims(
b.cast(b.decodeJpeg(input, 3), Float.class),
b.constant("make_batch", 0)),
b.constant("size", new int[] {H, W})),
b.constant("mean", mean)),
b.constant("scale", scale));
try (Session s = new Session(g)) {
return s.runner().fetch(output.op().name()).run().get(0).expect(Float.class);
}
}
}
示例6: constructGraphToNormalizeImage
import org.tensorflow.Output; //导入依赖的package包/类
private Graph constructGraphToNormalizeImage() {
Graph graph = new Graph();
GraphBuilder b = new GraphBuilder(graph);
// - The model was trained with images scaled to 150x150 pixels.
// - The colors, represented as R, G, B in 1-byte each were converted to
// float using value/Scale.
final int H = 150;
final int W = 150;
final float scale = 255f;
final Output input = b.placeholder("input", DataType.STRING);
final Output output =
b.div(
b.resizeBilinear(
b.expandDims(
b.cast(b.decodeJpeg(input, 3), DataType.FLOAT),
b.constant("make_batch", 0)),
b.constant("size", new int[] {H, W})),
b.constant("scale", scale));
normalizationOutputOperationName = output.op().name();
return graph;
}
示例7: getOpType
import org.tensorflow.Output; //导入依赖的package包/类
static
public OpType getOpType(Output output){
org.tensorflow.DataType dataType = output.dataType();
switch(dataType){
case FLOAT:
case DOUBLE:
case INT32:
case INT64:
return OpType.CONTINUOUS;
case STRING:
case BOOL:
return OpType.CATEGORICAL;
default:
throw new IllegalArgumentException();
}
}
示例8: constructAndExecuteGraphToNormalizeImage
import org.tensorflow.Output; //导入依赖的package包/类
private static Tensor constructAndExecuteGraphToNormalizeImage(byte[] imageBytes) {
//Graph construction: using the OperationBuilder class to construct a graph to decode, resize and normalize a JPEG image.
try (Graph g = new Graph()) {
GraphBuilder b = new GraphBuilder(g);
// Some constants specific to the pre-trained model at:
// https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
//
// - The model was trained with images scaled to 224x224 pixels.
// - The colors, represented as R, G, B in 1-byte each were
// converted to
// float using (value - Mean)/Scale.
final int H = 224;
final int W = 224;
final float mean = 117f;
final float scale = 1f;
// Since the graph is being constructed once per execution here, we
// can use a constant for the
// input image. If the graph were to be re-used for multiple input
// images, a placeholder would
// have been more appropriate.
final Output input = b.constant("input", imageBytes);
final Output output = b
.div(b.sub(
b.resizeBilinear(b.expandDims(b.cast(b.decodeJpeg(input, 3), DataType.FLOAT),
b.constant("make_batch", 0)), b.constant("size", new int[] { H, W })),
b.constant("mean", mean)), b.constant("scale", scale));
try (Session s = new Session(g)) {
return s.runner().fetch(output.op().name()).run().get(0);
}
}
}
开发者ID:kaiwaehner,项目名称:kafka-streams-machine-learning-examples,代码行数:34,代码来源:Kafka_Streams_TensorFlow_Image_Recognition_Example.java
示例9: constructAndExecuteGraphToNormalizeImage
import org.tensorflow.Output; //导入依赖的package包/类
private static Tensor constructAndExecuteGraphToNormalizeImage(byte[] imageBytes) {
try (Graph g = new Graph()) {
GraphBuilder b = new GraphBuilder(g);
// Some constants specific to the pre-trained model at:
// https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
//
// - The model was trained with images scaled to 224x224 pixels.
// - The colors, represented as R, G, B in 1-byte each were
// converted to
// float using (value - Mean)/Scale.
final int H = 224;
final int W = 224;
final float mean = 117f;
final float scale = 1f;
// Since the graph is being constructed once per execution here, we
// can use a constant for the
// input image. If the graph were to be re-used for multiple input
// images, a placeholder would
// have been more appropriate.
final Output input = b.constant("input", imageBytes);
final Output output = b
.div(b.sub(
b.resizeBilinear(b.expandDims(b.cast(b.decodeJpeg(input, 3), DataType.FLOAT),
b.constant("make_batch", 0)), b.constant("size", new int[] { H, W })),
b.constant("mean", mean)), b.constant("scale", scale));
try (Session s = new Session(g)) {
return s.runner().fetch(output.op().name()).run().get(0);
}
}
}
开发者ID:kaiwaehner,项目名称:kafka-streams-machine-learning-examples,代码行数:32,代码来源:Kafka_Streams_TensorFlow_Image_Recognition_Example_IntegrationTest.java
示例10: decodeJpeg
import org.tensorflow.Output; //导入依赖的package包/类
Output decodeJpeg(Output contents, long channels) {
return g.opBuilder("DecodeJpeg", "DecodeJpeg")
.addInput(contents)
.setAttr("channels", channels)
.build()
.output(0);
}
开发者ID:tzolov,项目名称:tensorflow-spring-cloud-stream-app-starters,代码行数:8,代码来源:LabelImageTensorflowInputConverter.java
示例11: decodeJpeg
import org.tensorflow.Output; //导入依赖的package包/类
Output decodeJpeg(Output contents, long channels) {
return g.opBuilder("DecodeJpeg", "DecodeJpeg")
.addInput(contents)
.setAttr("channels", channels)
.build()
.output(0);
}
示例12: constant
import org.tensorflow.Output; //导入依赖的package包/类
Output constant(String name, Object value) {
try (Tensor t = Tensor.create(value)) {
return g.opBuilder("Const", name)
.setAttr("dtype", t.dataType())
.setAttr("value", t)
.build()
.output(0);
}
}
示例13: convert
import org.tensorflow.Output; //导入依赖的package包/类
public static WritableMap convert(Output output) {
WritableNativeMap shapeMap = new WritableNativeMap();
shapeMap.putInt("numDimensions", output.shape().numDimensions());
WritableNativeMap map = new WritableNativeMap();
map.putInt("index", output.index());
map.putString("dataType", output.dataType().name());
map.putMap("shape", shapeMap);
return map;
}
示例14: outputList
import org.tensorflow.Output; //导入依赖的package包/类
@ReactMethod
public void outputList(String id, String opName, int index, int length, Promise promise) {
try {
Operation graphOperation = getGraphOperation(id, opName);
Output[] outputs = graphOperation.outputList(index, length);
WritableArray outputsConverted = new WritableNativeArray();
for (Output output : outputs) {
outputsConverted.pushMap(OutputConverter.convert(output));
}
promise.resolve(outputsConverted);
} catch (Exception e) {
promise.reject(e);
}
}
示例15: constant
import org.tensorflow.Output; //导入依赖的package包/类
<T> Output<T> constant(String name, Object value, Class<T> type) {
try (Tensor<T> t = Tensor.<T>create(value, type)) {
return g.opBuilder("Const", name)
.setAttr("dtype", DataType.fromClass(type))
.setAttr("value", t)
.build()
.<T>output(0);
}
}