本文整理汇总了Java中org.tensorflow.Operation类的典型用法代码示例。如果您正苦于以下问题:Java Operation类的具体用法?Java Operation怎么用?Java Operation使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
Operation类属于org.tensorflow包,在下文中一共展示了Operation类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: getOperation
import org.tensorflow.Operation; //导入依赖的package包/类
public Operation getOperation(String id, String name) {
Graph graph = graphs.get(id);
if(graph != null && name != null) {
return graph.operation(name);
} else {
return null;
}
}
示例2: graphOperation
import org.tensorflow.Operation; //导入依赖的package包/类
public Operation graphOperation(String operationName) {
final Operation operation = g.operation(operationName);
if (operation == null) {
throw new RuntimeException(
"Node '" + operationName + "' does not exist in model '" + modelName + "'");
}
return operation;
}
示例3: inputListLength
import org.tensorflow.Operation; //导入依赖的package包/类
@ReactMethod
public void inputListLength(String id, String opName, String name, Promise promise) {
try {
Operation graphOperation = getGraphOperation(id, opName);
promise.resolve(graphOperation.inputListLength(name));
} catch (Exception e) {
promise.reject(e);
}
}
示例4: name
import org.tensorflow.Operation; //导入依赖的package包/类
@ReactMethod
public void name(String id, String opName, Promise promise) {
try {
Operation graphOperation = getGraphOperation(id, opName);
promise.resolve(graphOperation.name());
} catch (Exception e) {
promise.reject(e);
}
}
示例5: numOutputs
import org.tensorflow.Operation; //导入依赖的package包/类
@ReactMethod
public void numOutputs(String id, String opName, Promise promise) {
try {
Operation graphOperation = getGraphOperation(id, opName);
promise.resolve(graphOperation.numOutputs());
} catch (Exception e) {
promise.reject(e);
}
}
示例6: output
import org.tensorflow.Operation; //导入依赖的package包/类
@ReactMethod
public void output(String id, String opName, int index, Promise promise) {
try {
Operation graphOperation = getGraphOperation(id, opName);
promise.resolve(OutputConverter.convert(graphOperation.output(index)));
} catch (Exception e) {
promise.reject(e);
}
}
示例7: outputList
import org.tensorflow.Operation; //导入依赖的package包/类
@ReactMethod
public void outputList(String id, String opName, int index, int length, Promise promise) {
try {
Operation graphOperation = getGraphOperation(id, opName);
Output[] outputs = graphOperation.outputList(index, length);
WritableArray outputsConverted = new WritableNativeArray();
for (Output output : outputs) {
outputsConverted.pushMap(OutputConverter.convert(output));
}
promise.resolve(outputsConverted);
} catch (Exception e) {
promise.reject(e);
}
}
示例8: outputListLength
import org.tensorflow.Operation; //导入依赖的package包/类
@ReactMethod
public void outputListLength(String id, String opName, String name, Promise promise) {
try {
Operation graphOperation = getGraphOperation(id, opName);
promise.resolve(graphOperation.outputListLength(name));
} catch (Exception e) {
promise.reject(e);
}
}
示例9: type
import org.tensorflow.Operation; //导入依赖的package包/类
@ReactMethod
public void type(String id, String opName, Promise promise) {
try {
Operation graphOperation = getGraphOperation(id, opName);
promise.resolve(graphOperation.type());
} catch (Exception e) {
promise.reject(e);
}
}
示例10: create
import org.tensorflow.Operation; //导入依赖的package包/类
/**
* Initializes a native TensorFlow session for classifying images.
*
* @param assetManager The asset manager to be used to load assets.
* @param modelFilename The filepath of the model GraphDef protocol buffer.
* @param locationFilename The filepath of label file for classes.
* @param inputSize The input size. A square image of inputSize x inputSize is assumed.
* @param imageMean The assumed mean of the image values.
* @param imageStd The assumed std of the image values.
* @param inputName The label of the image input node.
* @param outputName The label of the output node.
*/
public static Classifier create(
final AssetManager assetManager,
final String modelFilename,
final String locationFilename,
final int imageMean,
final float imageStd,
final String inputName,
final String outputLocationsName,
final String outputScoresName) {
final TensorFlowMultiBoxDetector d = new TensorFlowMultiBoxDetector();
d.inferenceInterface = new TensorFlowInferenceInterface(assetManager, modelFilename);
final Graph g = d.inferenceInterface.graph();
d.inputName = inputName;
// The inputName node has a shape of [N, H, W, C], where
// N is the batch size
// H = W are the height and width
// C is the number of channels (3 for our purposes - RGB)
final Operation inputOp = g.operation(inputName);
if (inputOp == null) {
throw new RuntimeException("Failed to find input Node '" + inputName + "'");
}
d.inputSize = (int) inputOp.output(0).shape().size(1);
d.imageMean = imageMean;
d.imageStd = imageStd;
// The outputScoresName node has a shape of [N, NumLocations], where N
// is the batch size.
final Operation outputOp = g.operation(outputScoresName);
if (outputOp == null) {
throw new RuntimeException("Failed to find output Node '" + outputScoresName + "'");
}
d.numLocations = (int) outputOp.output(0).shape().size(1);
d.boxPriors = new float[d.numLocations * 8];
try {
d.loadCoderOptions(assetManager, locationFilename, d.boxPriors);
} catch (final IOException e) {
throw new RuntimeException("Error initializing box priors from " + locationFilename);
}
// Pre-allocate buffers.
d.outputNames = new String[] {outputLocationsName, outputScoresName};
d.intValues = new int[d.inputSize * d.inputSize];
d.floatValues = new float[d.inputSize * d.inputSize * 3];
d.outputScores = new float[d.numLocations];
d.outputLocations = new float[d.numLocations * 4];
return d;
}
示例11: getGraphOperation
import org.tensorflow.Operation; //导入依赖的package包/类
private Operation getGraphOperation(String id, String name) {
return getReactApplicationContext().getNativeModule(RNTensorFlowGraphModule.class).getOperation(id, name);
}
示例12: loadNetwork
import org.tensorflow.Operation; //导入依赖的package包/类
@Override
public void loadNetwork(File f) throws IOException {
if (f == null) {
throw new IOException("null file");
}
try {
setFilename(f.toString());
setNettype("TensorFlow");
setNetname(f.getName());
graphDef = Files.readAllBytes(Paths.get(f.getAbsolutePath())); // "tensorflow_inception_graph.pb"
executionGraph = new Graph();
executionGraph.importGraphDef(graphDef);
Iterator<Operation> itr = executionGraph.operations();
StringBuilder b = new StringBuilder("TensorFlow Graph: \n");
int opnum = 0;
ioLayers.clear();
while (itr.hasNext()) {
Operation o = itr.next();
final String s = o.toString().toLowerCase();
// if(s.contains("input") || s.contains("output") || s.contains("placeholder")){
if (s.contains("input") || s.contains("placeholder") || s.contains("output")) { // find input placeholder & output
// int numOutputs = o.numOutputs();
b.append("********** ");
ioLayers.add(s);
// for (int onum = 0; onum < numOutputs; onum++) {
// Output output = o.output(onum);
// Shape shape = output.shape();
// int numDimensions = shape.numDimensions();
// for (int dimidx = 0; dimidx < numDimensions; dimidx++) {
// long dim = shape.size(dimidx);
// }
// }
// int inputLength=o.inputListLength("");
}
b.append(opnum++ + ": " + o.toString() + "\n");
}
log.info(b.toString());
} catch (Exception e) {
log.warning(e.toString());
e.printStackTrace();
}
}
示例13: create
import org.tensorflow.Operation; //导入依赖的package包/类
/**
* Initializes a native TensorFlow session for classifying images.
*
* @param assetManager The asset manager to be used to load assets.
* @param modelFilename The filepath of the model GraphDef protocol buffer.
* @param locationFilename The filepath of label file for classes.
* @param inputSize The input size. A square image of inputSize x inputSize is assumed.
* @param imageMean The assumed mean of the image values.
* @param imageStd The assumed std of the image values.
* @param inputName The label of the image input node.
* @param outputName The label of the output node.
*/
public static Classifier create(
final AssetManager assetManager,
final String modelFilename,
final String locationFilename,
final int imageMean,
final float imageStd,
final String inputName,
final String outputLocationsName,
final String outputScoresName) {
final TensorFlowMultiBoxDetector d = new TensorFlowMultiBoxDetector();
d.inferenceInterface = new TensorFlowInferenceInterface();
if (d.inferenceInterface.initializeTensorFlow(assetManager, modelFilename) != 0) {
throw new RuntimeException("TF initialization failed");
}
final Graph g = d.inferenceInterface.graph();
d.inputName = inputName;
// The inputName node has a shape of [N, H, W, C], where
// N is the batch size
// H = W are the height and width
// C is the number of channels (3 for our purposes - RGB)
final Operation inputOp = g.operation(inputName);
if (inputOp == null) {
throw new RuntimeException("Failed to find input Node '" + inputName + "'");
}
d.inputSize = (int) inputOp.output(0).shape().size(1);
d.imageMean = imageMean;
d.imageStd = imageStd;
// The outputScoresName node has a shape of [N, NumLocations], where N
// is the batch size.
final Operation outputOp = g.operation(outputScoresName);
if (outputOp == null) {
throw new RuntimeException("Failed to find output Node '" + outputScoresName + "'");
}
d.numLocations = (int) outputOp.output(0).shape().size(1);
d.boxPriors = new float[d.numLocations * 8];
try {
d.loadCoderOptions(assetManager, locationFilename, d.boxPriors);
} catch (final IOException e) {
throw new RuntimeException("Error initializing box priors from " + locationFilename);
}
// Pre-allocate buffers.
d.outputNames = new String[] {outputLocationsName, outputScoresName};
d.intValues = new int[d.inputSize * d.inputSize];
d.floatValues = new float[d.inputSize * d.inputSize * 3];
d.outputScores = new float[d.numLocations];
d.outputLocations = new float[d.numLocations * 4];
return d;
}
开发者ID:jxtz518,项目名称:Tensorflow_Andriod_With_Audio_Output,代码行数:68,代码来源:TensorFlowMultiBoxDetector.java
示例14: ensureDataField
import org.tensorflow.Operation; //导入依赖的package包/类
public DataField ensureDataField(SavedModel savedModel, NodeDef placeholder){
if(!("Placeholder").equals(placeholder.getOp())){
throw new IllegalArgumentException(placeholder.getName());
}
FieldName name = FieldName.create(placeholder.getName());
DataField dataField = getDataField(name);
if(dataField == null){
Operation operation = savedModel.getOperation(placeholder.getName());
Output output = operation.output(0);
dataField = createDataField(name, TypeUtil.getOpType(output), TypeUtil.getDataType(output));
}
return dataField;
}
示例15: createContinuousFeature
import org.tensorflow.Operation; //导入依赖的package包/类
public ContinuousFeature createContinuousFeature(SavedModel savedModel, NodeDef placeholder){
NodeDef cast = null;
if(("Cast").equals(placeholder.getOp())){
cast = placeholder;
placeholder = savedModel.getNodeDef(placeholder.getInput(0));
}
DataField dataField = ensureContinuousDataField(savedModel, placeholder);
ContinuousFeature result = new ContinuousFeature(this, dataField);
if(cast != null){
Operation operation = savedModel.getOperation(cast.getName());
Output output = operation.output(0);
result = result.toContinuousFeature(TypeUtil.getDataType(output));
}
return result;
}