当前位置: 首页>>代码示例>>Java>>正文


Java DataType类代码示例

本文整理汇总了Java中org.tensorflow.DataType的典型用法代码示例。如果您正苦于以下问题:Java DataType类的具体用法?Java DataType怎么用?Java DataType使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


DataType类属于org.tensorflow包,在下文中一共展示了DataType类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: Inception

import org.tensorflow.DataType; //导入依赖的package包/类
public Inception(String graphPath, String labelsPath) throws IOException{
    graphDef = Files.readAllBytes(Paths.get(graphPath));
    labels = Files.readAllLines(Paths.get(labelsPath));

    Graph g = new Graph();
    s = new Session(g);
    GraphBuilder b = new GraphBuilder(g);
    // - The model was trained with images scaled to 224x224 pixels.
    // - The colors, represented as R, G, B in 1-byte each were converted to
    //   float using (value - Mean)/Scale.
    final int H = 224;
    final int W = 224;
    final float mean = 117f;
    final float scale = 1f;
    output = b.div(
                b.sub(
                    b.resizeBilinear(
                            b.expandDims(
                                    b.cast(b.decodeJpeg(b.placeholder("input", DataType.STRING), 3), DataType.FLOAT),
                                    b.constant("make_batch", 0)),
                            b.constant("size", new int[] {H, W})),
                    b.constant("mean", mean)),
                b.constant("scale", scale));
}
 
开发者ID:alseambusher,项目名称:TensorFlow-models4j,代码行数:25,代码来源:Inception.java

示例2: LabelImageTensorflowInputConverter

import org.tensorflow.DataType; //导入依赖的package包/类
public LabelImageTensorflowInputConverter() {
	graph = new Graph();
	GraphBuilder b = new GraphBuilder(graph);
	// Some constants specific to the pre-trained model at:
	// https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
	// - The model was trained with images scaled to 224x224 pixels.
	// - The colors, represented as R, G, B in 1-byte each were converted to
	//   float using (value - Mean)/Scale.
	final int H = 224;
	final int W = 224;
	final float mean = 117f;
	final float scale = 1f;

	final Output input = b.placeholder("input", DataType.STRING);
	graphOutput =
			b.div(
					b.sub(
							b.resizeBilinear(
									b.expandDims(
											b.cast(b.decodeJpeg(input, 3), DataType.FLOAT),
											b.constant("make_batch", 0)),
									b.constant("size", new int[] {H, W})),
							b.constant("mean", mean)),
					b.constant("scale", scale));

}
 
开发者ID:tzolov,项目名称:tensorflow-spring-cloud-stream-app-starters,代码行数:27,代码来源:LabelImageTensorflowInputConverter.java

示例3: constructAndExecuteGraphToNormalizeImage

import org.tensorflow.DataType; //导入依赖的package包/类
private Tensor constructAndExecuteGraphToNormalizeImage(byte[] imageBytes) {
	try (Graph g = new Graph()) {
		GraphBuilder b = new GraphBuilder(g);
		// Some constants specific to the pre-trained model at:
		// https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
		//
		// - The model was trained with images scaled to 224x224 pixels.
		// - The colors, represented as R, G, B in 1-byte each were
		// converted to
		// float using (value - Mean)/Scale.
		final int H = 224;
		final int W = 224;
		final float mean = 117f;
		final float scale = 1f;

		// Since the graph is being constructed once per execution here, we
		// can use a constant for the
		// input image. If the graph were to be re-used for multiple input
		// images, a placeholder would
		// have been more appropriate.
		final Output input = b.constant("input", imageBytes);
		final Output output = b
				.div(b.sub(
						b.resizeBilinear(b.expandDims(b.cast(b.decodeJpeg(input, 3), DataType.FLOAT),
								b.constant("make_batch", 0)), b.constant("size", new int[] { H, W })),
						b.constant("mean", mean)), b.constant("scale", scale));
		try (Session s = new Session(g)) {
			return s.runner().fetch(output.op().name()).run().get(0);
		}
	}
}
 
开发者ID:jesuino,项目名称:java-ml-projects,代码行数:32,代码来源:LabelImage.java

示例4: constructAndExecuteGraphToNormalizeImage

import org.tensorflow.DataType; //导入依赖的package包/类
private static Tensor constructAndExecuteGraphToNormalizeImage(byte[] imageBytes) {
	try (Graph g = new Graph()) {
		GraphBuilder b = new GraphBuilder(g);
		// Some constants specific to the pre-trained model at:
		// https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
		//
		// - The model was trained with images scaled to 224x224 pixels.
		// - The colors, represented as R, G, B in 1-byte each were converted to
		// float using (value - Mean)/Scale.
		final int H = 224;
		final int W = 224;
		final float mean = 117f;
		final float scale = 1f;

		// Since the graph is being constructed once per execution here, we can use a
		// constant for the
		// input image. If the graph were to be re-used for multiple input images, a
		// placeholder would
		// have been more appropriate.
		final Output input = b.constant("input", imageBytes);
		final Output output = b
				.div(b.sub(
						b.resizeBilinear(b.expandDims(b.cast(b.decodeJpeg(input, 3), DataType.FLOAT),
								b.constant("make_batch", 0)), b.constant("size", new int[] { H, W })),
						b.constant("mean", mean)), b.constant("scale", scale));
		try (Session s = new Session(g)) {
			return s.runner().fetch(output.op().name()).run().get(0);
		}
	}
}
 
开发者ID:tspannhw,项目名称:nifi-tensorflow-processor,代码行数:31,代码来源:TensorFlowService.java

示例5: testImgToTensorMapping

import org.tensorflow.DataType; //导入依赖的package包/类
/** Tests the tensor(RAI, int[]) function */
@Test
public void testImgToTensorMapping() {
	assertEquals(1, 1);

	final long[] dims = new long[] { 5, 4, 3, 2 };
	final int[] mapping = new int[] { 1, 3, 0, 2 }; // A strange mapping
	final long[] shape = new long[] { 3, 5, 2, 4 };
	final int n = dims.length;

	// ByteType
	testImg2TensorMappingForType(new ArrayImgFactory<ByteType>().create(dims, new ByteType()), mapping, n, shape,
			DataType.UINT8);

	// DoubleType
	testImg2TensorMappingForType(new ArrayImgFactory<DoubleType>().create(dims, new DoubleType()), mapping, n,
			shape, DataType.DOUBLE);

	// FloatType
	testImg2TensorMappingForType(new ArrayImgFactory<FloatType>().create(dims, new FloatType()), mapping, n, shape,
			DataType.FLOAT);

	// IntType
	testImg2TensorMappingForType(new ArrayImgFactory<IntType>().create(dims, new IntType()), mapping, n, shape,
			DataType.INT32);

	// LongType
	testImg2TensorMappingForType(new ArrayImgFactory<LongType>().create(dims, new LongType()), mapping, n, shape,
			DataType.INT64);
}
 
开发者ID:imagej,项目名称:imagej-tensorflow,代码行数:31,代码来源:TensorsTest.java

示例6: constructGraphToNormalizeImage

import org.tensorflow.DataType; //导入依赖的package包/类
private Graph constructGraphToNormalizeImage() {
  Graph graph = new Graph();
  GraphBuilder b = new GraphBuilder(graph);
  // - The model was trained with images scaled to 150x150 pixels.
  // - The colors, represented as R, G, B in 1-byte each were converted to
  //   float using value/Scale.
  final int H = 150;
  final int W = 150;
  final float scale = 255f;

  final Output input = b.placeholder("input", DataType.STRING);
  final Output output =
      b.div(
          b.resizeBilinear(
              b.expandDims(
                  b.cast(b.decodeJpeg(input, 3), DataType.FLOAT),
                  b.constant("make_batch", 0)),
              b.constant("size", new int[] {H, W})),
          b.constant("scale", scale));
  normalizationOutputOperationName = output.op().name();
  return graph;
}
 
开发者ID:tomwhite,项目名称:set-game,代码行数:23,代码来源:ConvNet.java

示例7: getValues

import org.tensorflow.DataType; //导入依赖的package包/类
static
public List<?> getValues(Tensor tensor){
	DataType dataType = tensor.dataType();

	switch(dataType){
		case FLOAT:
			return Floats.asList(TensorUtil.toFloatArray(tensor));
		case DOUBLE:
			return Doubles.asList(TensorUtil.toDoubleArray(tensor));
		case INT32:
			return Ints.asList(TensorUtil.toIntArray(tensor));
		case INT64:
			return Longs.asList(TensorUtil.toLongArray(tensor));
		case STRING:
			return Arrays.asList(TensorUtil.toStringArray(tensor));
		case BOOL:
			return Booleans.asList(TensorUtil.toBooleanArray(tensor));
		default:
			throw new IllegalArgumentException();
	}
}
 
开发者ID:jpmml,项目名称:jpmml-tensorflow,代码行数:22,代码来源:TensorUtil.java

示例8: constructAndExecuteGraphToNormalizeImage

import org.tensorflow.DataType; //导入依赖的package包/类
private static Tensor constructAndExecuteGraphToNormalizeImage(byte[] imageBytes) {
	//Graph construction: using the OperationBuilder class to construct a graph to decode, resize and normalize a JPEG image.
	
	try (Graph g = new Graph()) {
		GraphBuilder b = new GraphBuilder(g);
		// Some constants specific to the pre-trained model at:
		// https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
		//
		// - The model was trained with images scaled to 224x224 pixels.
		// - The colors, represented as R, G, B in 1-byte each were
		// converted to
		// float using (value - Mean)/Scale.
		final int H = 224;
		final int W = 224;
		final float mean = 117f;
		final float scale = 1f;

		// Since the graph is being constructed once per execution here, we
		// can use a constant for the
		// input image. If the graph were to be re-used for multiple input
		// images, a placeholder would
		// have been more appropriate.
		final Output input = b.constant("input", imageBytes);
		final Output output = b
				.div(b.sub(
						b.resizeBilinear(b.expandDims(b.cast(b.decodeJpeg(input, 3), DataType.FLOAT),
								b.constant("make_batch", 0)), b.constant("size", new int[] { H, W })),
						b.constant("mean", mean)), b.constant("scale", scale));
		try (Session s = new Session(g)) {
			return s.runner().fetch(output.op().name()).run().get(0);
		}
	}
}
 
开发者ID:kaiwaehner,项目名称:kafka-streams-machine-learning-examples,代码行数:34,代码来源:Kafka_Streams_TensorFlow_Image_Recognition_Example.java

示例9: constructAndExecuteGraphToNormalizeImage

import org.tensorflow.DataType; //导入依赖的package包/类
private static Tensor constructAndExecuteGraphToNormalizeImage(byte[] imageBytes) {
	try (Graph g = new Graph()) {
		GraphBuilder b = new GraphBuilder(g);
		// Some constants specific to the pre-trained model at:
		// https://storage.googleapis.com/download.tensorflow.org/models/inception5h.zip
		//
		// - The model was trained with images scaled to 224x224 pixels.
		// - The colors, represented as R, G, B in 1-byte each were
		// converted to
		// float using (value - Mean)/Scale.
		final int H = 224;
		final int W = 224;
		final float mean = 117f;
		final float scale = 1f;

		// Since the graph is being constructed once per execution here, we
		// can use a constant for the
		// input image. If the graph were to be re-used for multiple input
		// images, a placeholder would
		// have been more appropriate.
		final Output input = b.constant("input", imageBytes);
		final Output output = b
				.div(b.sub(
						b.resizeBilinear(b.expandDims(b.cast(b.decodeJpeg(input, 3), DataType.FLOAT),
								b.constant("make_batch", 0)), b.constant("size", new int[] { H, W })),
						b.constant("mean", mean)), b.constant("scale", scale));
		try (Session s = new Session(g)) {
			return s.runner().fetch(output.op().name()).run().get(0);
		}
	}
}
 
开发者ID:kaiwaehner,项目名称:kafka-streams-machine-learning-examples,代码行数:32,代码来源:Kafka_Streams_TensorFlow_Image_Recognition_Example_IntegrationTest.java

示例10: toTensor

import org.tensorflow.DataType; //导入依赖的package包/类
public static Tensor toTensor(Tuple tuple) {
	DataType dataType = DataType.valueOf(tuple.getString(TF_DATA_TYPE));
	long[] shape = (long[]) tuple.getValue(TF_SHAPE);
	byte[] bytes = (byte[]) tuple.getValue(TF_VALUE);

	return Tensor.create(dataType, shape, ByteBuffer.wrap(bytes));
}
 
开发者ID:tzolov,项目名称:tensorflow-spring-cloud-stream-app-starters,代码行数:8,代码来源:TensorTupleConverter.java

示例11: testImgToTensorReverse

import org.tensorflow.DataType; //导入依赖的package包/类
/** Tests the tensor(RAI) function */
@Test
public void testImgToTensorReverse() {
	assertEquals(1, 1);

	final long[] dims = new long[] { 20, 10, 3 };
	final long[] shape = new long[] { 3, 10, 20 };
	final int n = dims.length;

	// ByteType
	testImg2TensorReverseForType(new ArrayImgFactory<ByteType>().create(dims, new ByteType()), n, shape,
			DataType.UINT8);

	// DoubleType
	testImg2TensorReverseForType(new ArrayImgFactory<DoubleType>().create(dims, new DoubleType()), n, shape,
			DataType.DOUBLE);

	// FloatType
	testImg2TensorReverseForType(new ArrayImgFactory<FloatType>().create(dims, new FloatType()), n, shape,
			DataType.FLOAT);

	// IntType
	testImg2TensorReverseForType(new ArrayImgFactory<IntType>().create(dims, new IntType()), n, shape,
			DataType.INT32);

	// LongType
	testImg2TensorReverseForType(new ArrayImgFactory<LongType>().create(dims, new LongType()), n, shape,
			DataType.INT64);
}
 
开发者ID:imagej,项目名称:imagej-tensorflow,代码行数:30,代码来源:TensorsTest.java

示例12: testImgToTensorDirect

import org.tensorflow.DataType; //导入依赖的package包/类
/** Tests the tensorDirect(RAI) function */
@Test
public void testImgToTensorDirect() {
	assertEquals(1, 1);

	final long[] dims = new long[] { 20, 10, 3 };
	final int n = dims.length;

	// ByteType
	testImg2TensorDirectForType(new ArrayImgFactory<ByteType>().create(dims, new ByteType()), n, dims,
			DataType.UINT8);

	// DoubleType
	testImg2TensorDirectForType(new ArrayImgFactory<DoubleType>().create(dims, new DoubleType()), n, dims,
			DataType.DOUBLE);

	// FloatType
	testImg2TensorDirectForType(new ArrayImgFactory<FloatType>().create(dims, new FloatType()), n, dims,
			DataType.FLOAT);

	// IntType
	testImg2TensorDirectForType(new ArrayImgFactory<IntType>().create(dims, new IntType()), n, dims,
			DataType.INT32);

	// LongType
	testImg2TensorDirectForType(new ArrayImgFactory<LongType>().create(dims, new LongType()), n, dims,
			DataType.INT64);
}
 
开发者ID:imagej,项目名称:imagej-tensorflow,代码行数:29,代码来源:TensorsTest.java

示例13: testImg2TensorReverseForType

import org.tensorflow.DataType; //导入依赖的package包/类
/** Tests the tensor(RAI) function for one image */
private <T extends RealType<T>> void testImg2TensorReverseForType(final Img<T> img, final int n, final long[] shape,
		final DataType t) {
	// Put some values to check into the image
	List<Point> points = createTestPoints(n);
	markPoints(img, points);

	Tensor tensor = Tensors.tensor(img);

	assertArrayEquals(shape, tensor.shape());
	assertEquals(n, tensor.numDimensions());
	assertEquals(t, tensor.dataType());
	checkPointsTensor(tensor, IntStream.range(0, n).map(i -> n - 1 - i).toArray(), points);
}
 
开发者ID:imagej,项目名称:imagej-tensorflow,代码行数:15,代码来源:TensorsTest.java

示例14: testImg2TensorDirectForType

import org.tensorflow.DataType; //导入依赖的package包/类
/** Tests the tensorDirect(RAI) function for one image */
private <T extends RealType<T>> void testImg2TensorDirectForType(final Img<T> img, final int n, final long[] shape,
		final DataType t) {
	// Put some values to check into the image
	List<Point> points = createTestPoints(n);
	markPoints(img, points);

	Tensor tensor = Tensors.tensorDirect(img);

	assertArrayEquals(shape, tensor.shape());
	assertEquals(n, tensor.numDimensions());
	assertEquals(t, tensor.dataType());
	checkPointsTensor(tensor, IntStream.range(0, n).toArray(), points);
}
 
开发者ID:imagej,项目名称:imagej-tensorflow,代码行数:15,代码来源:TensorsTest.java

示例15: testImg2TensorMappingForType

import org.tensorflow.DataType; //导入依赖的package包/类
/** Tests the tensor(RAI, int[]) function for one image */
private <T extends RealType<T>> void testImg2TensorMappingForType(final Img<T> img, final int[] mapping,
		final int n, final long[] shape, final DataType t) {
	// Put some values to check into the image
	List<Point> points = createTestPoints(n);
	markPoints(img, points);
	Tensor tensor = Tensors.tensor(img, mapping);

	assertArrayEquals(shape, tensor.shape());
	assertEquals(n, tensor.numDimensions());
	assertEquals(t, tensor.dataType());
	checkPointsTensor(tensor, mapping, points);
}
 
开发者ID:imagej,项目名称:imagej-tensorflow,代码行数:14,代码来源:TensorsTest.java


注:本文中的org.tensorflow.DataType类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。