当前位置: 首页>>代码示例>>Java>>正文


Java StringMetrics类代码示例

本文整理汇总了Java中org.simmetrics.metrics.StringMetrics的典型用法代码示例。如果您正苦于以下问题:Java StringMetrics类的具体用法?Java StringMetrics怎么用?Java StringMetrics使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


StringMetrics类属于org.simmetrics.metrics包,在下文中一共展示了StringMetrics类的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: getSimilarity

import org.simmetrics.metrics.StringMetrics; //导入依赖的package包/类
public double getSimilarity(String sentence1, String sentence2){
    double predictedScore = 0;
    if (PARAGRAPHVECS != null) {
        try {
            INDArray inferredVectorA = produceParagraphVectorOfGivenSentence(sentence1);
            INDArray inferredVectorB = produceParagraphVectorOfGivenSentence(sentence2);
            predictedScore = Transforms.cosineSim(inferredVectorA, inferredVectorB);
        } catch (Exception e) {
            logger.error("No word is matched with the given sentence and any sentence in training set - model file. " + sentence1
                    + ";" + sentence2);
            System.out.println("No word is matched with the given sentence and any sentence in training set - model file. " + sentence1
                    + ";" + sentence2);
            StringMetric metric = StringMetrics.qGramsDistance();
            predictedScore = metric.compare(sentence1, sentence2);
        }
    }

    return predictedScore;
}
 
开发者ID:gizemsogancioglu,项目名称:biosses,代码行数:20,代码来源:SentenceVectorsBasedSimilarity.java

示例2: getSmsSimilarityScore

import org.simmetrics.metrics.StringMetrics; //导入依赖的package包/类
private static double getSmsSimilarityScore(String algo, String sms1, String sms2) {
    Method method;
    try {
        method = StringMetrics.class.getMethod(algo);
        StringMetric m = (StringMetric) method.invoke(null);
        return m.compare(sms1, sms2);
    } catch (IllegalAccessException | InvocationTargetException | SecurityException | NoSuchMethodException e) {
        Log.e("GM/simError", e.toString());
        return 0.0;
    }
}
 
开发者ID:xRahul,项目名称:GroupingMessages,代码行数:12,代码来源:TrainSms.java

示例3: internalEvaluate

import org.simmetrics.metrics.StringMetrics; //导入依赖的package包/类
@Override
protected Value internalEvaluate(final Value... values) throws ExpressionEvaluationException {

    final String firstString = assertStringLiteral(values[0]).stringValue();
    final String secondString = assertStringLiteral(values[1]).stringValue();

    return literal(StringMetrics.overlapCoefficient().compare(firstString, secondString));
}
 
开发者ID:semantalytics,项目名称:stardog-plugin-string-similarity,代码行数:9,代码来源:OverlapCoefficient.java

示例4: testDistances

import org.simmetrics.metrics.StringMetrics; //导入依赖的package包/类
@Ignore
@Test public void testDistances()
{
	StringMetric similarity = StringMetrics.qGramsDistance();
	System.out.println(similarity.compare("amountsextended","amountsextended"));
	System.out.println(similarity.compare("amounts extended","extended amounts"));
	System.out.println(similarity.compare("amountsextended","extendedamounts"));
	System.out.println(similarity.compare("nestle","nestlé"));
	System.out.println(similarity.compare("nerf","berg"));
}
 
开发者ID:AskNowQA,项目名称:cubeqa,代码行数:11,代码来源:ComponentPropertyTest.java

示例5: calculateSimilarityScoreForGivenPair

import org.simmetrics.metrics.StringMetrics; //导入依赖的package包/类
@WebMethod
public double calculateSimilarityScoreForGivenPair(String s1, String s2, int methodType) throws SLIB_Exception, IOException {
    double similarityScore = 0;
    System.out.println("REQUEST has been received for: " + s1 + " " + s2 + " " + methodType);

    String preprocessedS1 = fileOperations.removeStopWordsFromSentence(s1, stopWordsList);
    String preprocessedS2 = fileOperations.removeStopWordsFromSentence(s2, stopWordsList);

    String example_1 = "It has recently been shown that Craf is essential for Kras G12D-induced NSCLC.";
    String example_2 = "It has recently become evident that Craf is essential for the onset of Kras-driven non-small cell lung cancer.";

    switch (methodType){
        case 1:
            //WordNet-based similarity was selected
            CombinedOntologyMethod measureOfWordNet = new CombinedOntologyMethod(stopWordsList);
            similarityScore = measureOfWordNet.getSimilarityForWordnet(s1, s2);
            System.out.println("SCOREOFWORDNET: " + similarityScore);
            break;

        case 2:
            //UMLS-based similarity option was selected
            CombinedOntologyMethod measureOfUmls = new CombinedOntologyMethod(stopWordsList);
            similarityScore = measureOfUmls.getSimilarityForUMLS(s1, s2);
            System.out.println("SCOREOFUMLS: " + similarityScore);
            break;
        case 3:
            //COMBINED ontology based similarity option was selected
            CombinedOntologyMethod score_wordnet = new CombinedOntologyMethod(stopWordsList);
            double score_1 =score_wordnet.getSimilarityForWordnet(s1, s2);
            double score2 = score_wordnet.getSimilarityForUMLS(s1,s2);
            similarityScore = (score2+score_1)/2;
            System.out.println("SCOREOFCOMBINED: " + similarityScore);
            break;

        case 4:
            //qgram string similarity option was selected.
            StringMetric metric = StringMetrics.qGramsDistance();
            similarityScore = metric.compare(preprocessedS1, preprocessedS2); //0.4767
            System.out.println("SCOREOFQGRAM: "+similarityScore);
            break;

        case 5:
            //paragraph vector model based similarity was selected as an option.
            SentenceVectorsBasedSimilarity sentenceVectorsBasedSimilarity = new SentenceVectorsBasedSimilarity();
            similarityScore = sentenceVectorsBasedSimilarity.getSimilarity(preprocessedS1, preprocessedS2);
            System.out.println("SCOREOFPARAGRAPHVEC:" + similarityScore);
            break;

        case 6:
            //Supervised Semantic Similarity was selected from the options list.
            LinearRegressionMethod linearRegressionMethod = new LinearRegressionMethod();
            similarityScore = linearRegressionMethod.getSimilarity(preprocessedS1, preprocessedS2);
            System.out.println("SCOREOFSUPERVISED:  " + similarityScore);
            break;
    }
    return similarityScore;
}
 
开发者ID:gizemsogancioglu,项目名称:biosses,代码行数:58,代码来源:SSESService.java

示例6: getSimilarity

import org.simmetrics.metrics.StringMetrics; //导入依赖的package包/类
public double getSimilarity(String sentence1, String sentence2) throws IOException {

        StringMetric metric = StringMetrics.needlemanWunch();
        float result = metric.compare(sentence1, sentence2); //0.4767
        return result;
    }
 
开发者ID:gizemsogancioglu,项目名称:biosses,代码行数:7,代码来源:SimMetricFunctions.java

示例7: Lookup

import org.simmetrics.metrics.StringMetrics; //导入依赖的package包/类
protected Lookup() {
	super();
	metric = StringMetrics.levenshtein();
}
 
开发者ID:ML-Schema,项目名称:openml-rdf,代码行数:5,代码来源:Lookup.java

示例8: jaccardSimilarity

import org.simmetrics.metrics.StringMetrics; //导入依赖的package包/类
public static float jaccardSimilarity(String sentence1, String sentence2){

        StringMetric metric = StringMetrics.jaccard();
        float result = metric.compare(sentence1, sentence2); //0.4767
        return result;

    }
 
开发者ID:gizemsogancioglu,项目名称:biosses,代码行数:8,代码来源:SimMetricFunctions.java


注:本文中的org.simmetrics.metrics.StringMetrics类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。