本文整理汇总了Java中org.ranksys.formats.preference.SimpleRatingPreferencesReader类的典型用法代码示例。如果您正苦于以下问题:Java SimpleRatingPreferencesReader类的具体用法?Java SimpleRatingPreferencesReader怎么用?Java SimpleRatingPreferencesReader使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
SimpleRatingPreferencesReader类属于org.ranksys.formats.preference包,在下文中一共展示了SimpleRatingPreferencesReader类的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: main
import org.ranksys.formats.preference.SimpleRatingPreferencesReader; //导入依赖的package包/类
public static void main(String[] args) throws IOException, ClassNotFoundException {
String userPath = args[0];
String itemPath = args[1];
String dataPath = args[2];
// READING USER, ITEM AND RATINGS FILES
FastUserIndex<Long> users = SimpleFastUserIndex.load(UsersReader.read(userPath, lp));
FastItemIndex<Long> items = SimpleFastItemIndex.load(ItemsReader.read(itemPath, lp));
FastPreferenceData<Long, Long> simpleData = SimpleFastPreferenceData.load(SimpleRatingPreferencesReader.get().read(dataPath, lp, lp), users, items);
// CREATING A COMPRESSED PREFERENCE DATA
CODEC<int[]> uCodec = new IntegratedFORVBCODEC();
CODEC<int[]> iCodec = new IntegratedFORVBCODEC();
// We assume here that the ratings are 1-5 stars
CODEC<byte[]> vCodec = new FixedLengthBitStreamCODEC(3);
FastPreferenceData<Long, Long> codecData = new RatingCODECPreferenceData<>(simpleData, users, items, uCodec, iCodec, vCodec);
// PRINTING COMPRESSION STATISTICS
System.out.println(uCodec.stats()[0] + "\t" + uCodec.stats()[1]);
System.out.println(iCodec.stats()[0] + "\t" + iCodec.stats()[1]);
System.out.println(vCodec.stats()[0] + "\t" + vCodec.stats()[1]);
System.out.println(codecData.numPreferences());
}
示例2: main
import org.ranksys.formats.preference.SimpleRatingPreferencesReader; //导入依赖的package包/类
public static void main(String[] args) throws IOException {
String userPath = args[0];
String itemPath = args[1];
String featurePath = args[2];
String trainDataPath = args[3];
String testDataPath = args[4];
String featureDataPath = args[5];
FastUserIndex<Long> userIndex = SimpleFastUserIndex.load(UsersReader.read(userPath, lp));
FastItemIndex<Long> itemIndex = SimpleFastItemIndex.load(ItemsReader.read(itemPath, lp));
FastFeatureIndex<String> featureIndex = SimpleFastFeatureIndex.load(FeatsReader.read(featurePath, sp));
FastPreferenceData<Long, Long> trainData = SimpleFastPreferenceData.load(SimpleRatingPreferencesReader.get().read(trainDataPath, lp, lp), userIndex, itemIndex);
FastPreferenceData<Long, Long> testData = SimpleFastPreferenceData.load(SimpleRatingPreferencesReader.get().read(testDataPath, lp, lp), userIndex, itemIndex);
FastFeatureData<Long, String, Double> featureData = SimpleFastFeatureData.load(SimpleFeaturesReader.get().read(featureDataPath, lp, sp), itemIndex, featureIndex);
int numIter = 100;
Factorization<Long, Long> factorization = new CPLSAFactorizer<Long, Long, String>(numIter, featureData).factorize(trainData);
Recommender<Long, Long> recommender = new MFRecommender<>(userIndex, itemIndex, factorization);
Set<Long> targetUsers = testData.getUsersWithPreferences().collect(Collectors.toSet());
RecommendationFormat<Long, Long> format = new SimpleRecommendationFormat<>(lp, lp);
Function<Long, IntPredicate> filter = FastFilters.notInTrain(trainData);
int maxLength = 100;
RecommenderRunner<Long, Long> runner = new FastFilterRecommenderRunner<>(userIndex, itemIndex, targetUsers.stream(), filter, maxLength);
System.out.println("Running cPLSA recommender");
try (RecommendationFormat.Writer<Long, Long> writer = format.getWriter("cplsa")) {
runner.run(recommender, writer);
}
}
示例3: main
import org.ranksys.formats.preference.SimpleRatingPreferencesReader; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
String userPath = args[0];
String itemPath = args[1];
String featurePath = args[2];
String trainDataPath = args[3];
String featureDataPath = args[4];
String recIn = args[5];
double lambda = 0.5;
int cutoff = 100;
int numIter = 100;
FastUserIndex<Long> userIndex = SimpleFastUserIndex.load(UsersReader.read(userPath, lp));
FastItemIndex<Long> itemIndex = SimpleFastItemIndex.load(ItemsReader.read(itemPath, lp));
FastFeatureIndex<String> featureIndex = SimpleFastFeatureIndex.load(FeatsReader.read(featurePath, sp));
FastPreferenceData<Long, Long> trainData = SimpleFastPreferenceData.load(SimpleRatingPreferencesReader.get().read(trainDataPath, lp, lp), userIndex, itemIndex);
FastFeatureData<Long, String, Double> featureData = SimpleFastFeatureData.load(SimpleFeaturesReader.get().read(featureDataPath, lp, sp), itemIndex, featureIndex);
CPLSAIAFactorizationModelFactory<Long, Long, String> cPLSAModel = new CPLSAIAFactorizationModelFactory<>(numIter, trainData,featureData);
Reranker<Long, Long> reranker = new XQuAD<>(cPLSAModel.getAspectModel(), lambda, cutoff, true);
RecommendationFormat<Long, Long> format = new SimpleRecommendationFormat<>(lp, lp);
System.out.println("Running xQuAD with cPLSA aspect model");
String recOut = String.format("%s_xQuAD_cplsa_%.1f", recIn, lambda);
try (RecommendationFormat.Writer<Long, Long> writer = format.getWriter(recOut)) {
format.getReader(recIn).readAll()
.map(rec -> reranker.rerankRecommendation(rec, cutoff))
.forEach(Unchecked.consumer(writer::write));
}
}
示例4: run
import org.ranksys.formats.preference.SimpleRatingPreferencesReader; //导入依赖的package包/类
@Override
public TemporalDataModelIF<Long, Long> run(final RUN_OPTIONS opts) throws RecommenderException, IOException {
if (isAlreadyRecommended()) {
return null;
}
String trainDataPath = getProperties().getProperty(RecommendationRunner.TRAINING_SET);
String testDataPath = getProperties().getProperty(RecommendationRunner.TEST_SET);
String userPath = getProperties().getProperty(RecommendationRunner.USER_INDEX);
String itemPath = getProperties().getProperty(RecommendationRunner.ITEM_INDEX);
PreferenceData<Long, Long> dataTotal = null;
if ((userPath == null) || (itemPath == null)){
PreferenceData<Long, Long> dataTrain = SimplePreferenceData.load(SimpleRatingPreferencesReader.get().read(trainDataPath, Parsers.lp, Parsers.lp));
PreferenceData<Long, Long> dataTest = SimplePreferenceData.load(SimpleRatingPreferencesReader.get().read(testDataPath, Parsers.lp, Parsers.lp));
dataTotal = new ConcatPreferenceData<>(dataTrain, dataTest);
}
FastUserIndex<Long> userIndex = null;
if (userPath != null){
userIndex = SimpleFastUserIndex.load(UsersReader.read(userPath, Parsers.lp));
}else{
userIndex = SimpleFastUserIndex.load(dataTotal.getAllUsers());
}
FastItemIndex<Long> itemIndex = null;
if (itemPath != null){
itemIndex = SimpleFastItemIndex.load(ItemsReader.read(itemPath, Parsers.lp));
}else{
itemIndex = SimpleFastItemIndex.load(dataTotal.getAllItems());
}
FastPreferenceData<Long, Long> trainData = SimpleFastPreferenceData.load(SimpleRatingPreferencesReader.get().read(trainDataPath, Parsers.lp, Parsers.lp), userIndex, itemIndex);
FastPreferenceData<Long, Long> testData = SimpleFastPreferenceData.load(SimpleRatingPreferencesReader.get().read(testDataPath, Parsers.lp, Parsers.lp), userIndex, itemIndex);
return runRanksysRecommender(opts, userIndex, itemIndex, trainData, testData);
}
示例5: main
import org.ranksys.formats.preference.SimpleRatingPreferencesReader; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
String trainDataPath = args[0];
String testDataPath = args[1];
String featurePath = args[2];
String recIn = args[3];
Double threshold = Double.parseDouble(args[4]);
// USER - ITEM - RATING files for train and test
PreferenceData<Long, Long> trainData = SimplePreferenceData.load(SimpleRatingPreferencesReader.get().read(trainDataPath, lp, lp));
PreferenceData<Long, Long> testData = SimplePreferenceData.load(SimpleRatingPreferencesReader.get().read(testDataPath, lp, lp));
PreferenceData<Long, Long> totalData = new ConcatPreferenceData<>(trainData, testData);
// EVALUATED AT CUTOFF 10
int cutoff = 10;
// ITEM - FEATURE file
FeatureData<Long, String, Double> featureData = SimpleFeatureData.load(SimpleFeaturesReader.get().read(featurePath, lp, sp));
// COSINE DISTANCE
ItemDistanceModel<Long> dist = new CosineFeatureItemDistanceModel<>(featureData);
// BINARY RELEVANCE
BinaryRelevanceModel<Long, Long> binRel = new BinaryRelevanceModel<>(false, testData, threshold);
// NO RELEVANCE
NoRelevanceModel<Long, Long> norel = new NoRelevanceModel<>();
// NO RANKING DISCOUNT
RankingDiscountModel disc = new NoDiscountModel();
// INTENT MODEL
IntentModel<Long, Long, String> intentModel = new FeatureIntentModel<>(totalData, featureData);
Map<String, SystemMetric<Long, Long>> sysMetrics = new HashMap<>();
////////////////////////
// INDIVIDUAL METRICS //
////////////////////////
Map<String, RecommendationMetric<Long, Long>> recMetrics = new HashMap<>();
// PRECISION
recMetrics.put("prec", new Precision<>(cutoff, binRel));
// RECALL
recMetrics.put("recall", new Recall<>(cutoff, binRel));
// nDCG
recMetrics.put("ndcg", new NDCG<>(cutoff, new NDCG.NDCGRelevanceModel<>(false, testData, threshold)));
// EILD
recMetrics.put("eild", new EILD<>(cutoff, dist, norel, disc));
// EPC
recMetrics.put("epc", new EPC<>(cutoff, new PCItemNovelty<>(trainData), norel, disc));
// EFD
recMetrics.put("efd", new EFD<>(cutoff, new FDItemNovelty<>(trainData), norel, disc));
// EPD
recMetrics.put("epd", new EPD<>(cutoff, new PDItemNovelty<>(false, trainData, dist), norel, disc));
// ERR-IA
recMetrics.put("err-ia", new ERRIA<>(cutoff, intentModel, new ERRIA.ERRRelevanceModel<>(false, testData, threshold)));
// alpha-nDCG
recMetrics.put("a-ndcg", new AlphaNDCG<>(cutoff, 0.5, featureData, binRel));
// AVERAGE VALUES OF RECOMMENDATION METRICS FOR ITEMS IN TEST
int numUsers = testData.numUsersWithPreferences();
recMetrics.forEach((name, metric) -> sysMetrics.put(name, new AverageRecommendationMetric<>(metric, numUsers)));
////////////////////
// SYSTEM METRICS //
////////////////////
sysMetrics.put("aggrdiv", new AggregateDiversityMetric<>(cutoff, norel));
int numItems = totalData.numItemsWithPreferences();
sysMetrics.put("gini", new GiniIndex<>(cutoff, numItems));
RecommendationFormat<Long, Long> format = new SimpleRecommendationFormat<>(lp, lp);
format.getReader(recIn).readAll().forEach(rec -> sysMetrics.values().forEach(metric -> metric.add(rec)));
sysMetrics.forEach((name, metric) -> System.out.println(name + "\t" + metric.evaluate()));
}