本文整理汇总了Java中org.opencv.core.Core.MinMaxLocResult类的典型用法代码示例。如果您正苦于以下问题:Java MinMaxLocResult类的具体用法?Java MinMaxLocResult怎么用?Java MinMaxLocResult使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
MinMaxLocResult类属于org.opencv.core.Core包,在下文中一共展示了MinMaxLocResult类的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: match
import org.opencv.core.Core.MinMaxLocResult; //导入依赖的package包/类
public MatchResult match(Mat scene, Mat templ, Method method, Mat img) {
int result_cols = scene.cols() - templ.cols() + 1;
int result_rows = scene.rows() - templ.rows() + 1;
Mat result = new Mat(result_rows, result_cols, CV_32FC1);
Imgproc.matchTemplate(scene, templ, result, method.ordinal());
//Core.normalize(result, result, 0, 1, 32,-1,new Mat());
MinMaxLocResult mmr = Core.minMaxLoc(result);
Point matchLoc;
double maxVal;
if (method.ordinal() == Imgproc.TM_SQDIFF
|| method.ordinal() == Imgproc.TM_SQDIFF_NORMED) {
matchLoc = mmr.minLoc;
maxVal = mmr.minVal;
}
else {
matchLoc = mmr.maxLoc;
maxVal = mmr.maxVal;
}
MatchResult currResult = new MatchResult(matchLoc.x +(templ.cols()/2),matchLoc.y +(templ.rows()/2),0,maxVal);
return currResult;
}
示例2: findImage
import org.opencv.core.Core.MinMaxLocResult; //导入依赖的package包/类
private ImageFinderResult findImage(Mat sourceMat, Mat templateMat, double desiredAccuracy) {
if (sourceMat.width() < templateMat.width() || sourceMat.height() < templateMat.height()) {
throw new UnsupportedOperationException("The template image is larger than the source image. Ensure that the width and/or height of the image you are trying to find do not exceed the dimensions of the source image.");
}
Mat result = new Mat(sourceMat.rows() - templateMat.rows() + 1, sourceMat.rows() - templateMat.rows() + 1, CvType.CV_32FC1);
int intMatchingMethod;
switch (this.matchingMethod) {
case MM_CORELLATION_COEFF:
intMatchingMethod = Imgproc.TM_CCOEFF_NORMED;
break;
case MM_CROSS_CORELLATION:
intMatchingMethod = Imgproc.TM_CCORR_NORMED;
break;
default:
intMatchingMethod = Imgproc.TM_SQDIFF_NORMED;
}
Imgproc.matchTemplate(sourceMat, templateMat, result, intMatchingMethod);
MinMaxLocResult minMaxLocRes = Core.minMaxLoc(result);
double accuracy = 0;
Point location = null;
if (this.matchingMethod == MatchingMethod.MM_SQUARE_DIFFERENCE) {
accuracy = 1 - minMaxLocRes.minVal;
location = minMaxLocRes.minLoc;
} else {
accuracy = minMaxLocRes.maxVal;
location = minMaxLocRes.maxLoc;
}
if (accuracy < desiredAccuracy) {
throw new ImageNotFoundException(
String.format(
"Failed to find template image in the source image. The accuracy was %.2f and the desired accuracy was %.2f",
accuracy,
desiredAccuracy),
new Rectangle((int) location.x, (int) location.y, templateMat.width(), templateMat.height()),
accuracy);
}
if (!minMaxLocResultIsValid(minMaxLocRes)) {
throw new ImageNotFoundException(
"Image find result (MinMaxLocResult) was invalid. This usually happens when the source image is covered in one solid color.",
null,
null);
}
Rectangle foundRect = new Rectangle(
(int) location.x,
(int) location.y,
templateMat.width(),
templateMat.height());
return new ImageFinderResult(foundRect, accuracy);
}
示例3: minMaxLocResultIsValid
import org.opencv.core.Core.MinMaxLocResult; //导入依赖的package包/类
private boolean minMaxLocResultIsValid(MinMaxLocResult minMaxLocRes) {
if (minMaxLocRes.minVal == 1
&& minMaxLocRes.maxVal == 1
&& minMaxLocRes.maxLoc.x == 0
&& minMaxLocRes.maxLoc.y == 0
&& minMaxLocRes.minLoc.x == 0
&& minMaxLocRes.minLoc.y == 0) {
return false;
} else {
return true;
}
}
示例4: templateMatching
import org.opencv.core.Core.MinMaxLocResult; //导入依赖的package包/类
/**
* Checks if the pattern can be found in the given area of interest and sets up feedback.
* @param match_method Match Methods supported by OpenCV.
* @param res ID of the resource pattern in the res directory.
* @param resName Name of the resource to be returned.
* @param thresh Threshold the best detection has to pass in order to be a successful detection.
*/
public void templateMatching(int match_method, int res, String resName, double thresh) {
// Pattern Matching
Point matchLocCode; double matchValCode;
Log.i("HERE", "" + resName);
Rect roiCodeArea = new Rect(new Point(showBit.cols() * card.getPattern(resName).getTl().x,showBit.rows() * card.getPattern(resName).getTl().y), new Point(showBit.cols() * card.getPattern(resName).getBr().x, showBit.rows() * card.getPattern(resName).getBr().y));
Mat cropedCodeArea = showBit.submat(roiCodeArea);
Bitmap bmCode = BitmapFactory.decodeResource(getResources(), res);
Mat cropedCode = new Mat ( bmCode.getHeight(), bmCode.getWidth(), CvType.CV_8U, new Scalar(4));
Utils.bitmapToMat(bmCode, cropedCode);
int result_cols_code = cropedCodeArea.cols() - cropedCode.cols() + 1;
int result_rows_code = cropedCodeArea.rows() - cropedCode.rows() + 1;
Mat resultCode = new Mat(result_rows_code, result_cols_code, CvType.CV_32FC1);
Imgproc.matchTemplate(cropedCodeArea, cropedCode, resultCode, match_method);
MinMaxLocResult mmrCode = Core.minMaxLoc(resultCode);
if (match_method == Imgproc.TM_SQDIFF || match_method == Imgproc.TM_SQDIFF_NORMED) {
matchLocCode = mmrCode.minLoc;
matchValCode = mmrCode.minVal;
} else {
matchLocCode = mmrCode.maxLoc;
matchValCode = mmrCode.maxVal;
}
Log.w("matchValCode", "" + matchValCode);
// Pattern passes Detection
if(matchValCode >= thresh) {
// If detecting card and pattern passes: get the card that pattern belongs to.
if(cardType.equals("-DETECT-")) {
cardType = getFoundCard(resName);
runOnUiThread(new Runnable() {
@Override
public void run() {
Toast.makeText(
CardValidationActivity.this,
"Card detected: " + cardType,
Toast.LENGTH_LONG
).show();
}
});
}
else {
Core.rectangle( cropedCodeArea, matchLocCode, new Point( matchLocCode.x + cropedCode.cols() , matchLocCode.y + cropedCode.rows() ), new Scalar(0, 255, 0, 255), 4 );
theText.put("Pattern: " + resName, "PASSED");
}
}
else {
theText.put("Pattern: " + resName, "FAILED");
failureCount++;
}
}
示例5: SingleScaleMatch
import org.opencv.core.Core.MinMaxLocResult; //导入依赖的package包/类
public SingleScaleMatch(double fingerprintMatch, MinMaxLocResult minMaxLocResult, Rectangle.Int result) {
this.fingerprintMatch = fingerprintMatch;
this.minMaxLocResult = minMaxLocResult;
this.result = result;
}
示例6: findMatch
import org.opencv.core.Core.MinMaxLocResult; //导入依赖的package包/类
private static ScanMatch findMatch(Mat searchImageMat, Mat templateMat, double templateStdDev, double scale,
Image.Int searchImageScaled, BigDecimal s) {
double templateScale = s.doubleValue() * scale;
int w = (int) Math.round(templateMat.width() * templateScale);
int h = (int) Math.round(templateMat.height() * templateScale);
// early exit - template is bigger than search image
if (templateMat.cols() * templateScale >= searchImageMat.cols() || templateMat.rows() * templateScale >= searchImageMat.rows()) {
return null;
}
if (isTemplateTooSmall(w, h, s)) {
return null;
}
// scale
Mat scaledTemplateMat = new MatOfFloat();
resize(templateMat, scaledTemplateMat, new Size(w, h), 0, 0, CV_INTER_AREA);
// normalized cross-corr
Mat resultMatrix = new MatOfFloat();
matchTemplate(searchImageMat, scaledTemplateMat, resultMatrix, TM_CCORR_NORMED);
MinMaxLocResult minMaxResult = minMaxLoc(resultMatrix);
// compute fingerprint for scaled template
Image.Int templateForFingerprint = ImageUtil.Convert.toImage(OpenCV.matToBufferedImage(scaledTemplateMat));
ImageFingerprint templateFingerprint = new ImageFingerprint(ImageUtil.toSquare(templateForFingerprint), 0xf2, 0xf1, 0xf0, FINGERPRINT_SIZE);
// if template has low contrast bump it up
if (templateStdDev < STDDEV_THRESHOLD) {
Image.Int contrastedImage = ImageUtil.Convert.toImageInt(Contrast.autoContrast(ImageUtil.Convert.toImageByte(templateForFingerprint)));
templateFingerprint = new ImageFingerprint(ImageUtil.toSquare(contrastedImage), 0xf2, 0xf1, 0xf0, FINGERPRINT_SIZE);
}
// cut the possible area from the image and get fingerprint probability for it
Rectangle.Int resultRectangle = new Rectangle.Int((int) minMaxResult.maxLoc.x, (int) minMaxResult.maxLoc.y, w, h);
SingleScaleMatch singleScaleMatch = getMatchForRectangle(searchImageScaled, templateFingerprint, templateStdDev, minMaxResult, resultRectangle);
// free
resultMatrix.release();
return new ScanMatch(singleScaleMatch.fingerprintMatch, scaleRectangle(singleScaleMatch.result, 1 / scale), s);
}
示例7: getMatchForRectangle
import org.opencv.core.Core.MinMaxLocResult; //导入依赖的package包/类
private static SingleScaleMatch getMatchForRectangle(Image.Int searchImage, ImageFingerprint templateFingerprint,
double templateStdDev, MinMaxLocResult result, Rectangle.Int resultRectangle) {
Image.Int crop = ImageUtil.Cut.crop(searchImage, resultRectangle);
// also increase contrast for crop of search image
Image.Int contrast = applyContrast(crop, templateStdDev < STDDEV_THRESHOLD);
ImageFingerprint resultFingerprint = new ImageFingerprint(ImageUtil.toSquare(contrast), 0xf2, 0xf1, 0xf0, FINGERPRINT_SIZE);
double stddev1 = stddev(templateFingerprint);
double stddev2 = stddev(resultFingerprint);
double stddevMatch = Math.min(stddev1, stddev2) / Math.max(stddev1, stddev2);
double fingerprintProbability = fingerprintMatch(templateFingerprint, resultFingerprint);
double matchProbability = stddevMatch > 0.8 ? fingerprintProbability : fingerprintProbability * stddevMatch;
return new SingleScaleMatch(matchProbability, result, resultRectangle);
}
示例8: execute
import org.opencv.core.Core.MinMaxLocResult; //导入依赖的package包/类
@Override
public void execute(Raster raster, Map<Key, Serializable> params,Hints hints, ProgressListener listener) {
double[] minMax = null;
if(params != null){
if(params.containsKey(KEY_MINMAX)){
minMax = (double[]) params.get(KEY_MINMAX);
}
}
final int raster_width = raster.getDimension().width();
final int raster_height = raster.getDimension().height();
final int pixelAmount = raster_width * raster_height;
if(minMax == null){
final Mat srcMat = matAccordingToDatatype(
raster.getBands().get(0).datatype(),
raster.getData(),
raster_width,
raster_height);
MinMaxLocResult result = Core.minMaxLoc(srcMat);
minMax = new double[]{result.minVal, result.maxVal};
}
int[] pixels = new int[pixelAmount];
final ByteBufferReader reader = new ByteBufferReader(raster.getData().array(), ByteOrder.nativeOrder());
// Log.d(OpenCVAmplitudeRescaler.class.getSimpleName(), "rawdata min "+minMax[0] +" max "+minMax[1]);
for (int i = 0; i < pixelAmount; i++) {
double d = ByteBufferReaderUtil.getValue(reader, raster.getBands().get(0).datatype());
pixels[i] = pixelValueForGrayScale(d, minMax[0], minMax[1]);
}
ByteBuffer buffer = ByteBuffer.allocate(pixels.length * 4);
buffer.asIntBuffer().put(pixels);
raster.setData(buffer);
}