本文整理汇总了Java中org.nd4j.linalg.dataset.api.DataSetPreProcessor类的典型用法代码示例。如果您正苦于以下问题:Java DataSetPreProcessor类的具体用法?Java DataSetPreProcessor怎么用?Java DataSetPreProcessor使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
DataSetPreProcessor类属于org.nd4j.linalg.dataset.api包,在下文中一共展示了DataSetPreProcessor类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: preProcess
import org.nd4j.linalg.dataset.api.DataSetPreProcessor; //导入依赖的package包/类
/**
* Pre process a dataset sequentially
*
* @param toPreProcess the data set to pre process
*/
@Override
public void preProcess(DataSet toPreProcess) {
for (DataSetPreProcessor preProcessor : preProcessors) {
preProcessor.preProcess(toPreProcess);
}
}
示例2: DataVecDataSetFunction
import org.nd4j.linalg.dataset.api.DataSetPreProcessor; //导入依赖的package包/类
/**
* Main constructor, including for multi-label regression
*
* @param labelIndexFrom Index of the first target
* @param labelIndexTo Index of the last target, inclusive (for classification or single-output regression: same as labelIndexFrom)
* @param numPossibleLabels Unused for regression, or number of classes for classification
* @param regression If true: regression. false: classification
*/
public DataVecDataSetFunction(int labelIndexFrom, int labelIndexTo, int numPossibleLabels, boolean regression,
DataSetPreProcessor preProcessor, WritableConverter converter) {
this.labelIndex = labelIndexFrom;
this.labelIndexTo = labelIndexTo;
this.numPossibleLabels = numPossibleLabels;
this.regression = regression;
this.preProcessor = preProcessor;
this.converter = converter;
}
示例3: DataVecByteDataSetFunction
import org.nd4j.linalg.dataset.api.DataSetPreProcessor; //导入依赖的package包/类
/**
* @param labelIndex Index of the label column
* @param numPossibleLabels Number of classes for classification (not used if regression = true)
* @param batchSize size of examples in DataSet. Pass in total examples if including all
* @param byteFileLen number of bytes per individual file
* @param regression False for classification, true for regression
* @param preProcessor DataSetPreprocessor (may be null)
*/
public DataVecByteDataSetFunction(int labelIndex, int numPossibleLabels, int batchSize, int byteFileLen,
boolean regression, DataSetPreProcessor preProcessor) {
this.labelIndex = labelIndex;
this.numPossibleLabels = numPossibleLabels;
this.batchSize = batchSize;
this.byteFileLen = byteFileLen;
this.regression = regression;
this.preProcessor = preProcessor;
}
示例4: DataVecSequencePairDataSetFunction
import org.nd4j.linalg.dataset.api.DataSetPreProcessor; //导入依赖的package包/类
/**
* @param numPossibleLabels Number of classes for classification (not used if regression = true)
* @param regression False for classification, true for regression
* @param alignmentMode Alignment mode for data. See {@link DataVecSequencePairDataSetFunction.AlignmentMode}
* @param preProcessor DataSetPreprocessor (may be null)
* @param converter WritableConverter (may be null)
*/
public DataVecSequencePairDataSetFunction(int numPossibleLabels, boolean regression, AlignmentMode alignmentMode,
DataSetPreProcessor preProcessor, WritableConverter converter) {
this.numPossibleLabels = numPossibleLabels;
this.regression = regression;
this.alignmentMode = alignmentMode;
this.preProcessor = preProcessor;
this.converter = converter;
}
示例5: DataVecSequenceDataSetFunction
import org.nd4j.linalg.dataset.api.DataSetPreProcessor; //导入依赖的package包/类
/**
* @param labelIndex Index of the label column
* @param numPossibleLabels Number of classes for classification (not used if regression = true)
* @param regression False for classification, true for regression
* @param preProcessor DataSetPreprocessor (may be null)
* @param converter WritableConverter (may be null)
*/
public DataVecSequenceDataSetFunction(int labelIndex, int numPossibleLabels, boolean regression,
DataSetPreProcessor preProcessor, WritableConverter converter) {
this.labelIndex = labelIndex;
this.numPossibleLabels = numPossibleLabels;
this.regression = regression;
this.preProcessor = preProcessor;
this.converter = converter;
}
示例6: setPreProcessor
import org.nd4j.linalg.dataset.api.DataSetPreProcessor; //导入依赖的package包/类
public void setPreProcessor(DataSetPreProcessor preProcessor) {
throw new UnsupportedOperationException("Not implemented");
}
示例7: getPreProcessor
import org.nd4j.linalg.dataset.api.DataSetPreProcessor; //导入依赖的package包/类
@Override
public DataSetPreProcessor getPreProcessor() {
throw new UnsupportedOperationException("Not implemented");
}
示例8: setPreProcessor
import org.nd4j.linalg.dataset.api.DataSetPreProcessor; //导入依赖的package包/类
@Override public void setPreProcessor(DataSetPreProcessor dataSetPreProcessor) {
throw new UnsupportedOperationException("Not Implemented");
}
示例9: setPreProcessor
import org.nd4j.linalg.dataset.api.DataSetPreProcessor; //导入依赖的package包/类
@Override
public void setPreProcessor(DataSetPreProcessor preProcessor) {
throw new UnsupportedOperationException();
}
示例10: getPreProcessor
import org.nd4j.linalg.dataset.api.DataSetPreProcessor; //导入依赖的package包/类
@Override
public DataSetPreProcessor getPreProcessor() {
throw new UnsupportedOperationException("Not implemented");
}
示例11: setPreProcessor
import org.nd4j.linalg.dataset.api.DataSetPreProcessor; //导入依赖的package包/类
public void setPreProcessor(DataSetPreProcessor preProcessor)
{
throw new UnsupportedOperationException("Not implemented");
}
示例12: setPreProcessor
import org.nd4j.linalg.dataset.api.DataSetPreProcessor; //导入依赖的package包/类
@Override
public void setPreProcessor(DataSetPreProcessor preProcessor) {
throw new UnsupportedOperationException();
}
示例13: getPreProcessor
import org.nd4j.linalg.dataset.api.DataSetPreProcessor; //导入依赖的package包/类
@Override
public DataSetPreProcessor getPreProcessor() {
throw new UnsupportedOperationException("Not implemented");
}
示例14: setPreProcessor
import org.nd4j.linalg.dataset.api.DataSetPreProcessor; //导入依赖的package包/类
@Override
public void setPreProcessor(DataSetPreProcessor preProcessor) {
this.dataSetPreProcessor = preProcessor;
}
示例15: getPreProcessor
import org.nd4j.linalg.dataset.api.DataSetPreProcessor; //导入依赖的package包/类
@Override
public DataSetPreProcessor getPreProcessor() {
return dataSetPreProcessor;
}