本文整理汇总了Java中org.encog.ml.data.basic.BasicMLDataSet类的典型用法代码示例。如果您正苦于以下问题:Java BasicMLDataSet类的具体用法?Java BasicMLDataSet怎么用?Java BasicMLDataSet使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
BasicMLDataSet类属于org.encog.ml.data.basic包,在下文中一共展示了BasicMLDataSet类的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: trainAndStore
import org.encog.ml.data.basic.BasicMLDataSet; //导入依赖的package包/类
@Test
public void trainAndStore() {
BasicMLDataSet dataSet = getData();
// Create network
BasicNetwork network = getNetwork();
// Train
System.out.println("Training network...");
Train train = new ResilientPropagation(network, dataSet);
for (int i = 0; i < TRAIN_ITERATIONS; i++) {
train.iteration();
}
System.out.println("Training finished, error: " + train.getError());
// Save to file
System.out.println("Saving to file...");
saveToFile(network);
System.out.println("Done");
}
示例2: loadTrainingData
import org.encog.ml.data.basic.BasicMLDataSet; //导入依赖的package包/类
private BasicMLDataSet loadTrainingData() throws Exception {
TrainingData data = TrainingData.readData(Configuration.CSV_DIRECTORY, INPUTS, OUTPUTS, true);
if (data == null) {
throw new Exception("No data read");
}
/* Normalize and train on the data */
Normalization normData = Normalization.createNormalization(data.input, data.target);
System.out.println("Norm min target: " + normData.targetMin);
System.out.println("Norm max target: " + normData.targetMax);
Normalization norm = EvolvedController.createDefaultNormalization();
norm.normalizeInput(data.input, 0, 1);
norm.normalizeTarget(data.target, 0, 1);
return new BasicMLDataSet(data.input.getData(), data.target.getData());
}
示例3: getData
import org.encog.ml.data.basic.BasicMLDataSet; //导入依赖的package包/类
private BasicMLDataSet getData() {
TrainingData data = TrainingData.readData(Configuration.CSV_DIRECTORY, INPUTS, OUTPUTS, true);
if (data == null) {
System.out.println("No data read!");
return null;
}
/* Prepare data */
Normalization normData = Normalization.createNormalization(data.input, data.target);
System.out.println("Norm min target: " + normData.targetMin);
System.out.println("Norm max target: " + normData.targetMax);
Normalization norm = EvolvedController.createDefaultNormalization();
norm.normalizeInput(data.input, 0, 1);
norm.normalizeTarget(data.target, 0, 1);
return new BasicMLDataSet(data.input.getData(), data.target.getData());
}
示例4: train
import org.encog.ml.data.basic.BasicMLDataSet; //导入依赖的package包/类
@Override /** {@inheritDoc} */
public String train(final double[][] inputs, final double[][] expected, double learningRate, double maxError,
long maxIterations) {
this.learningRate = learningRate;
trainingSet = new BasicMLDataSet(inputs, expected);
train = new Backpropagation(network, trainingSet, this.learningRate, 0.3);
train.fixFlatSpot(false);
int epoch = 0;
do {
iterations.add(epoch);
train.iteration();
errors.add(train.getError());
if (epoch++ > maxIterations) break;
} while (train.getError() > maxError/100);
return epoch + " " + train.getError();
}
示例5: main
import org.encog.ml.data.basic.BasicMLDataSet; //导入依赖的package包/类
public static void main(final String args[]) {
MLDataSet trainingSet = new BasicMLDataSet(XOR_INPUT, XOR_IDEAL);
NEATPopulation pop = new NEATPopulation(2,1,1000);
pop.setInitialConnectionDensity(1.0);// not required, but speeds training
pop.reset();
CalculateScore score = new TrainingSetScore(trainingSet);
// train the neural network
final EvolutionaryAlgorithm train = NEATUtil.constructNEATTrainer(pop,score);
do {
train.iteration();
System.out.println("Epoch #" + train.getIteration() + " Error:" + train.getError()+ ", Species:" + pop.getSpecies().size());
} while(train.getError() > 0.01);
NEATNetwork network = (NEATNetwork)train.getCODEC().decode(train.getBestGenome());
// test the neural network
System.out.println("Neural Network Results:");
EncogUtility.evaluate(network, trainingSet);
Encog.getInstance().shutdown();
}
示例6: main
import org.encog.ml.data.basic.BasicMLDataSet; //导入依赖的package包/类
/**
* The main method.
* @param args No arguments are used.
*/
public static void main(final String args[]) {
// create a neural network, without using a factory
BasicNetwork network = new BasicNetwork();
network.addLayer(new BasicLayer(null,true,2));
network.addLayer(new BasicLayer(new ActivationSigmoid(),true,3));
network.addLayer(new BasicLayer(new ActivationSigmoid(),false,1));
network.getStructure().finalizeStructure();
network.reset();
// create training data
MLDataSet trainingSet = new BasicMLDataSet(XOR_INPUT, XOR_IDEAL);
// train the neural network
final ResilientPropagation train = new ResilientPropagation(network, trainingSet);
int epoch = 1;
do {
train.iteration();
System.out.println("Epoch #" + epoch + " Error:" + train.getError());
epoch++;
} while(train.getError() > 0.01);
train.finishTraining();
// test the neural network
System.out.println("Neural Network Results:");
for(MLDataPair pair: trainingSet ) {
final MLData output = network.compute(pair.getInput());
System.out.println(pair.getInput().getData(0) + "," + pair.getInput().getData(1)
+ ", actual=" + output.getData(0) + ",ideal=" + pair.getIdeal().getData(0));
}
Encog.getInstance().shutdown();
}
示例7: solve
import org.encog.ml.data.basic.BasicMLDataSet; //导入依赖的package包/类
@Override /** {@inheritDoc} */
public double[] solve(final double[][] inputs) {
double[] results = new double[inputs.length];
trainingSet = new BasicMLDataSet(inputs, null);
int i = 0;
for (MLDataPair pair : trainingSet) {
final MLData output = network.compute(pair.getInput());
results[i++] = output.getData(0);
}
Encog.getInstance().shutdown();
return results;
}
示例8: solve
import org.encog.ml.data.basic.BasicMLDataSet; //导入依赖的package包/类
/** {@inheritDoc} */
public double[] solve(final double[][] inputs) {
double[] results = new double[inputs.length];
trainingSet = new BasicMLDataSet(inputs, null);
int i = 0;
for (MLDataPair pair : trainingSet) {
final MLData output = network.compute(pair.getInput());
results[i++] = output.getData(0);
}
Encog.getInstance().shutdown();
return results;
}
示例9: MemoryDiskMLDataSet
import org.encog.ml.data.basic.BasicMLDataSet; //导入依赖的package包/类
/**
* Constructor with {@link #fileName}, {@link #inputCount} and {@link #outputCount}
*/
public MemoryDiskMLDataSet(String fileName, int inputCount, int outputCount) {
this.memoryDataSet = new BasicMLDataSet();
this.inputCount = inputCount;
this.outputCount = outputCount;
this.fileName = fileName;
}
示例10: main
import org.encog.ml.data.basic.BasicMLDataSet; //导入依赖的package包/类
/**
* The main method.
* @param args No arguments are used.
*/
public static void main(final String args[]) {
// create a neural network, without using a factory
BasicNetwork network = new BasicNetwork();
network.addLayer(new BasicLayer(null,true,2));
network.addLayer(new BasicLayer(new ActivationSigmoid(),true,3));
network.addLayer(new BasicLayer(new ActivationSigmoid(),false,1));
network.getStructure().finalizeStructure();
network.reset();
// create training data
MLDataSet trainingSet = new BasicMLDataSet(XOR_INPUT, XOR_IDEAL);
// train the neural network
final ResilientPropagation train = new ResilientPropagation(network, trainingSet);
int epoch = 1;
do {
train.iteration();
System.out.println("Epoch #" + epoch + " Error:" + train.getError());
epoch++;
} while(train.getError() > 0.01);
train.finishTraining();
// test the neural network
System.out.println("Neural Network Results:");
for(MLDataPair pair: trainingSet ) {
final MLData output = network.compute(pair.getInput());
System.out.println(pair.getInput().getData(0) + "," + pair.getInput().getData(1)
+ ", actual=" + output.getData(0) + ",ideal=" + pair.getIdeal().getData(0));
}
Encog.getInstance().shutdown();
}
示例11: transformData
import org.encog.ml.data.basic.BasicMLDataSet; //导入依赖的package包/类
private void transformData() {
intermediateDataset = new BasicMLDataSet();
for(int i = 0 ; i < this.dataset.getRecordCount(); i ++) {
MLData input = hiddenNet.compute(dataset.get(i).getInput());
intermediateDataset.add(input, input);
}
}
示例12: main
import org.encog.ml.data.basic.BasicMLDataSet; //导入依赖的package包/类
/**
* The main method.
* @param args No arguments are used.
*/
public static void main(final String args[]) {
// // create a neural network, without using a factory
// BasicNetwork network = new BasicNetwork();
// network.addLayer(new BasicLayer(null,true,2));
// network.addLayer(new BasicLayer(new ActivationSigmoid(),true,3));
// network.addLayer(new BasicLayer(new ActivationSigmoid(),false,1));
// network.getStructure().finalizeStructure();
// network.reset();
//
// // create training data
// MLDataSet trainingSet = new BasicMLDataSet(XOR_INPUT, XOR_IDEAL);
//
// // train the neural network
// final ResilientPropagation train = new ResilientPropagation(network, trainingSet);
//
// int epoch = 1;
//
// do {
// train.iteration();
// System.out.println("Epoch #" + epoch + " Error:" + train.getError());
// epoch++;
// } while(train.getError() > 0.01);
// train.finishTraining();
//
// // test the neural network
// System.out.println("Neural Network Results:");
// for(MLDataPair pair: trainingSet ) {
// final MLData output = network.compute(pair.getInput());
// System.out.println(pair.getInput().getData(0) + "," + pair.getInput().getData(1)
// + ", actual=" + output.getData(0) + ",ideal=" + pair.getIdeal().getData(0));
// }
//
// Encog.getInstance().shutdown();
MLDataSet trainingSet = new BasicMLDataSet(XOR_INPUT, XOR_IDEAL);
NEATPopulation pop = new NEATPopulation(2,1,1000);
pop.setInitialConnectionDensity(1.0);// not required, but speeds training
pop.reset();
CalculateScore score = new TrainingSetScore(trainingSet);
// train the neural network
final EvolutionaryAlgorithm train = NEATUtil.constructNEATTrainer(pop, score);
do {
train.iteration();
System.out.println("Epoch #" + train.getIteration() + " Error:" + train.getError()+ ", Species:" + pop.getSpecies().size());
} while(train.getError() > 0.01);
NEATNetwork network = (NEATNetwork)train.getCODEC().decode(train.getBestGenome());
// test the neural network
System.out.println("Neural Network Results:");
EncogUtility.evaluate(network, trainingSet);
Encog.getInstance().shutdown();
}
示例13: train
import org.encog.ml.data.basic.BasicMLDataSet; //导入依赖的package包/类
public void train(final ArrayList<DataPoint> dataHistory) {
if (isTraining()) {
throw new IllegalStateException();
}
setTrainerThread(new Thread() {
public void run() {
// Clean and normalize the data history
ArrayList<DataPoint> cleanedDataHistory = cleanDataHistory(dataHistory);
ArrayList<DataPoint> normalizedDataHistory = normalizeDataHistory(cleanedDataHistory);
// Create a new neural network and data set
BasicNetwork neuralNetwork = EncogUtility.simpleFeedForward(2, getHiddenLayerNeurons(0),
getHiddenLayerNeurons(1), 5, true);
MLDataSet dataSet = new BasicMLDataSet();
// Add all points of the data history to the data set
for (DataPoint dataPoint : normalizedDataHistory) {
MLData input = new BasicMLData(2);
input.setData(0, dataPoint.getX());
input.setData(1, dataPoint.getY());
// If getButton() is 0, the output will be 0, 0, 0, 0
// If getButton() is 2, the output will be 0, 1, 0, 0
// If getButton() is 4, the output will be 0, 0, 0, 1
MLData ideal = new BasicMLData(5);
for (int i = 0; i <= 4; i++) {
ideal.setData(i, (dataPoint.getButton() == i) ? 1 : 0);
}
MLDataPair pair = new BasicMLDataPair(input, ideal);
dataSet.add(pair);
}
// Create a training method
MLTrain trainingMethod = new ResilientPropagation((ContainsFlat) neuralNetwork, dataSet);
long startTime = System.currentTimeMillis();
int timeLeft = getMaxTrainingTime();
int iteration = 0;
// Train the network using multiple iterations on the training method
do {
trainingMethod.iteration();
timeLeft = (int) ((startTime + getMaxTrainingTime()) - System.currentTimeMillis());
iteration++;
sendNeuralNetworkIteration(iteration, trainingMethod.getError(), timeLeft);
} while (trainingMethod.getError() > getMaxTrainingError() && timeLeft > 0
&& !trainingMethod.isTrainingDone());
trainingMethod.finishTraining();
// Return the neural network to all listeners
sendNeuralNetworkTrainerResult(neuralNetwork);
}
});
getTrainerThread().start();
}
示例14: AutoEncoder
import org.encog.ml.data.basic.BasicMLDataSet; //导入依赖的package包/类
public AutoEncoder(){
params = new ArrayList<MLParams>();
dataset = new BasicMLDataSet();
}