当前位置: 首页>>代码示例>>Java>>正文


Java WeightInit类代码示例

本文整理汇总了Java中org.deeplearning4j.nn.weights.WeightInit的典型用法代码示例。如果您正苦于以下问题:Java WeightInit类的具体用法?Java WeightInit怎么用?Java WeightInit使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


WeightInit类属于org.deeplearning4j.nn.weights包,在下文中一共展示了WeightInit类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: getDeepDenseLayerNetworkConfiguration

import org.deeplearning4j.nn.weights.WeightInit; //导入依赖的package包/类
/** Returns the network configuration, 2 hidden DenseLayers of size 50.
 */
private static MultiLayerConfiguration getDeepDenseLayerNetworkConfiguration() {
    final int numHiddenNodes = 50;
    return new NeuralNetConfiguration.Builder()
            .seed(seed)
            .iterations(iterations)
            .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
            .learningRate(learningRate)
            .weightInit(WeightInit.XAVIER)
            .updater(Updater.NESTEROVS).momentum(0.9)
            .list()
            .layer(0, new DenseLayer.Builder().nIn(numInputs).nOut(numHiddenNodes)
                    .activation(Activation.TANH).build())
            .layer(1, new DenseLayer.Builder().nIn(numHiddenNodes).nOut(numHiddenNodes)
                    .activation(Activation.TANH).build())
            .layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.MSE)
                    .activation(Activation.IDENTITY)
                    .nIn(numHiddenNodes).nOut(numOutputs).build())
            .pretrain(false).backprop(true).build();
}
 
开发者ID:IsaacChanghau,项目名称:NeuralNetworksLite,代码行数:22,代码来源:RegressionMathFunctions.java

示例2: getConfiguration

import org.deeplearning4j.nn.weights.WeightInit; //导入依赖的package包/类
protected MultiLayerConfiguration getConfiguration()
   {
int hiddenLayerNodes = parameters.getHiddeLayerNodes()[0];
final RBM hiddenLayer = new RBM.Builder(RBM.HiddenUnit.RECTIFIED, RBM.VisibleUnit.GAUSSIAN)
	.nIn(parameters.getInputSize()).nOut(hiddenLayerNodes).weightInit(WeightInit.XAVIER).k(1)
	.activation("relu").lossFunction(LossFunctions.LossFunction.RMSE_XENT).updater(Updater.ADAGRAD)
	.dropOut(0.5).build();

final OutputLayer outputLayer = new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT).nIn(hiddenLayerNodes)
	.nOut(parameters.getOutputSize()).activation("softmax").build();

return new NeuralNetConfiguration.Builder().seed(parameters.getSeed()).iterations(parameters.getIterations())
	.learningRate(parameters.getLearningRate()).optimizationAlgo(OptimizationAlgorithm.CONJUGATE_GRADIENT)
	.l2(2e-4).regularization(true).momentum(0.9).useDropConnect(true).list(2).layer(0, hiddenLayer)
	.layer(1, outputLayer).build();
   }
 
开发者ID:amrabed,项目名称:DL4J,代码行数:17,代码来源:DeepBeliefNetworkModel.java

示例3: getConfiguration

import org.deeplearning4j.nn.weights.WeightInit; //导入依赖的package包/类
@Override
   protected MultiLayerConfiguration getConfiguration()
   {
return new NeuralNetConfiguration.Builder().seed(parameters.getSeed()).iterations(parameters.getIterations())
	.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).learningRate(parameters.getLearningRate()).l2(0.001)
	.list(4)
	.layer(0,
		new DenseLayer.Builder().nIn(parameters.getInputSize()).nOut(250).weightInit(WeightInit.XAVIER)
			.updater(Updater.ADAGRAD).activation("relu").build())
	.layer(1,
		new DenseLayer.Builder().nIn(250).nOut(10).weightInit(WeightInit.XAVIER)
			.updater(Updater.ADAGRAD).activation("relu").build())
	.layer(2,
		new DenseLayer.Builder().nIn(10).nOut(250).weightInit(WeightInit.XAVIER)
			.updater(Updater.ADAGRAD).activation("relu").build())
	.layer(3,
		new OutputLayer.Builder().nIn(250).nOut(parameters.getInputSize()).weightInit(WeightInit.XAVIER)
			.updater(Updater.ADAGRAD).activation("relu")
			.lossFunction(LossFunctions.LossFunction.MSE).build())
	.pretrain(false).backprop(true).build();
   }
 
开发者ID:amrabed,项目名称:DL4J,代码行数:22,代码来源:AnomalyDetectionModel.java

示例4: getConfiguration

import org.deeplearning4j.nn.weights.WeightInit; //导入依赖的package包/类
@Override
   protected MultiLayerConfiguration getConfiguration()
   {
return new NeuralNetConfiguration.Builder().seed(parameters.getSeed())
	.gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue)
	.gradientNormalizationThreshold(1.0).iterations(parameters.getIterations()).momentum(0.5)
	.momentumAfter(Collections.singletonMap(3, 0.9))
	.optimizationAlgo(OptimizationAlgorithm.CONJUGATE_GRADIENT).list(4)
	.layer(0,
		new AutoEncoder.Builder().nIn(parameters.getInputSize()).nOut(500).weightInit(WeightInit.XAVIER)
			.lossFunction(LossFunction.RMSE_XENT).corruptionLevel(0.3).build())
	.layer(1, new AutoEncoder.Builder().nIn(500).nOut(250).weightInit(WeightInit.XAVIER)
		.lossFunction(LossFunction.RMSE_XENT).corruptionLevel(0.3)

		.build())
	.layer(2,
		new AutoEncoder.Builder().nIn(250).nOut(200).weightInit(WeightInit.XAVIER)
			.lossFunction(LossFunction.RMSE_XENT).corruptionLevel(0.3).build())
	.layer(3, new OutputLayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD).activation("softmax").nIn(200)
		.nOut(parameters.getOutputSize()).build())
	.pretrain(true).backprop(false).build();
   }
 
开发者ID:amrabed,项目名称:DL4J,代码行数:23,代码来源:StackedAutoEncoderModel.java

示例5: getConfiguration

import org.deeplearning4j.nn.weights.WeightInit; //导入依赖的package包/类
@Override
   protected MultiLayerConfiguration getConfiguration()
   {
final ConvulationalNetParameters parameters = (ConvulationalNetParameters) this.parameters;
final MultiLayerConfiguration.Builder builder = new NeuralNetConfiguration.Builder().seed(parameters.getSeed())
	.iterations(parameters.getIterations())
	.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).list(2)
	.layer(0,
		new ConvolutionLayer.Builder(new int[] { 1, 1 }).nIn(parameters.getInputSize()).nOut(1000)
			.activation("relu").weightInit(WeightInit.RELU).build())
	.layer(1,
		new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT).nOut(parameters.getOutputSize())
			.weightInit(WeightInit.XAVIER).activation("softmax").build())
	.backprop(true).pretrain(false);

new ConvolutionLayerSetup(builder, parameters.getRows(), parameters.getColumns(), parameters.getChannels());

return builder.build();
   }
 
开发者ID:amrabed,项目名称:DL4J,代码行数:20,代码来源:ConvolutionalNetModel.java

示例6: getConfiguration

import org.deeplearning4j.nn.weights.WeightInit; //导入依赖的package包/类
@Override
   protected MultiLayerConfiguration getConfiguration()
   {
final ConvulationalNetParameters parameters = (ConvulationalNetParameters) this.parameters;
final MultiLayerConfiguration.Builder builder = new NeuralNetConfiguration.Builder().seed(parameters.getSeed())
	.iterations(parameters.getIterations())
	.gradientNormalization(GradientNormalization.RenormalizeL2PerLayer)
	.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).list(3)
	.layer(0,
		new ConvolutionLayer.Builder(10, 10).stride(2, 2).nIn(parameters.getChannels()).nOut(6)
			.weightInit(WeightInit.XAVIER).activation("relu").build())
	.layer(1, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX, new int[] { 2, 2 }).build())
	.layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
		.nOut(parameters.getOutputSize()).weightInit(WeightInit.XAVIER).activation("softmax").build())
	.backprop(true).pretrain(false);

new ConvolutionLayerSetup(builder, parameters.getRows(), parameters.getColumns(), parameters.getChannels());

return builder.build();
   }
 
开发者ID:amrabed,项目名称:DL4J,代码行数:21,代码来源:ConvolutionalNetModel.java

示例7: testSerialization

import org.deeplearning4j.nn.weights.WeightInit; //导入依赖的package包/类
@Test
public void testSerialization() throws IOException, ClassNotFoundException {
  NeuralNetConfiguration nnc = new NeuralNetConfiguration();
  nnc.setSeed(42);
  nnc.builder()
      .learningRate(5)
      .weightInit(WeightInit.UNIFORM)
      .biasLearningRate(5)
      .l1(5)
      .l2(5)
      .updater(new AdaDelta())
      .build();

  final File output = Paths.get(System.getProperty("java.io.tmpdir"), "nnc.object").toFile();
  ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream(output));
  oos.writeObject(nnc);
  oos.close();
  ObjectInputStream ois = new ObjectInputStream(new FileInputStream(output));
  NeuralNetConfiguration nnc2 = (NeuralNetConfiguration) ois.readObject();
  Assert.assertEquals(nnc, nnc2);
  output.delete();
}
 
开发者ID:Waikato,项目名称:wekaDeeplearning4j,代码行数:23,代码来源:NeuralNetConfigurationTest.java

示例8: net

import org.deeplearning4j.nn.weights.WeightInit; //导入依赖的package包/类
private static MultiLayerConfiguration net(int nIn, int nOut) {
    return new NeuralNetConfiguration.Builder()
            .seed(42)
            .iterations(1)
            .activation(Activation.RELU)
            .weightInit(WeightInit.XAVIER)
            .learningRate(0.1)
            .regularization(true).l2(1e-4)
            .list(
                    new DenseLayer.Builder().nIn(nIn).nOut(3).build(),
                    new DenseLayer.Builder().nIn(3).nOut(3).build(),
                    new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
                            .activation(Activation.SOFTMAX)
                            .nIn(3)
                            .nOut(nOut)
                            .build()
            )
            .build();
}
 
开发者ID:wmeddie,项目名称:dl4j-trainer-archetype,代码行数:20,代码来源:Train.java

示例9: getConfiguration

import org.deeplearning4j.nn.weights.WeightInit; //导入依赖的package包/类
private static MultiLayerConfiguration getConfiguration(DataFrame dataset) {

        MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
                .seed(seed)
                .constrainGradientToUnitNorm(true)
                .optimizationAlgo(OptimizationAlgorithm.CONJUGATE_GRADIENT)
                .list(4)
                .layer(0, new RBM.Builder(RBM.HiddenUnit.BINARY, RBM.VisibleUnit.BINARY)
                        .weightInit(WeightInit.XAVIER)
                        .nIn(rows * columns).nOut(600).build())
                .layer(1, new RBM.Builder(RBM.HiddenUnit.BINARY, RBM.VisibleUnit.BINARY)
                        .weightInit(WeightInit.XAVIER)
                        .nIn(600).nOut(250).build())
                .layer(2, new RBM.Builder(RBM.HiddenUnit.BINARY, RBM.VisibleUnit.BINARY)
                        .weightInit(WeightInit.XAVIER)
                        .nIn(250).nOut(200).build())
                .layer(3, new OutputLayer.Builder(LossFunctions.LossFunction.RMSE_XENT)
                        .weightInit(WeightInit.XAVIER)
                        .activation("softmax")
                        .nIn(200).nOut(AUTOMATIC).build())
                .pretrain(true).backprop(false)
                .build();

        return conf;
    }
 
开发者ID:javadba,项目名称:dl4j-spark-ml-examples,代码行数:26,代码来源:JavaLfwClassification.java

示例10: testInitializers

import org.deeplearning4j.nn.weights.WeightInit; //导入依赖的package包/类
@Test
public void testInitializers() throws Exception {

    Integer keras1 = 1;
    Integer keras2 = 2;

    String[] keras1Inits = initializers(conf1);
    String[] keras2Inits = initializers(conf2);
    WeightInit[] dl4jInits = dl4jInitializers();
    Distribution[] dl4jDistributions = dl4jDistributions();

    for (int i=0; i< dl4jInits.length - 1; i++) {
        initilizationDenseLayer(conf1, keras1, keras1Inits[i], dl4jInits[i], dl4jDistributions[i]);
        initilizationDenseLayer(conf2, keras2,  keras2Inits[i], dl4jInits[i], dl4jDistributions[i]);

        initilizationDenseLayer(conf2, keras2,  keras2Inits[dl4jInits.length-1],
                dl4jInits[dl4jInits.length-1], dl4jDistributions[dl4jInits.length-1]);
    }
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:20,代码来源:KerasInitilizationTest.java

示例11: dl4jInitializers

import org.deeplearning4j.nn.weights.WeightInit; //导入依赖的package包/类
private WeightInit[] dl4jInitializers() {
    return new WeightInit[] {
            WeightInit.XAVIER,
            WeightInit.XAVIER_UNIFORM,
            WeightInit.LECUN_NORMAL,
            WeightInit.LECUN_UNIFORM,
            WeightInit.DISTRIBUTION,
            WeightInit.RELU,
            WeightInit.RELU_UNIFORM,
            WeightInit.ONES,
            WeightInit.ZERO,
            WeightInit.IDENTITY,
            WeightInit.DISTRIBUTION,
            WeightInit.DISTRIBUTION,
            WeightInit.DISTRIBUTION,
            WeightInit.VAR_SCALING_NORMAL_FAN_IN};
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:18,代码来源:KerasInitilizationTest.java

示例12: getConf

import org.deeplearning4j.nn.weights.WeightInit; //导入依赖的package包/类
private static MultiLayerConfiguration getConf() {
    MultiLayerConfiguration conf =
            new NeuralNetConfiguration.Builder().seed(12345L)
                    .list().layer(0,
                    new DenseLayer.Builder().nIn(4).nOut(3)
                            .weightInit(WeightInit.DISTRIBUTION)
                            .dist(new NormalDistribution(0,1))
                            .build())
                    .layer(1, new org.deeplearning4j.nn.conf.layers.OutputLayer.Builder(
                            LossFunctions.LossFunction.MCXENT)
                            .activation(Activation.SOFTMAX).nIn(3).nOut(3)
                            .weightInit(WeightInit.DISTRIBUTION)
                            .dist(new NormalDistribution(0, 1)).build())
                    .build();
    return conf;
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:17,代码来源:MultiLayerTest.java

示例13: getGraph

import org.deeplearning4j.nn.weights.WeightInit; //导入依赖的package包/类
private ComputationGraph getGraph(int numLabels, double lambda) {
    Nd4j.getRandom().setSeed(12345);
    ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder().seed(12345)
                    .optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
                    .weightInit(WeightInit.DISTRIBUTION).dist(new NormalDistribution(0, 1)).updater(new NoOp())
                    .graphBuilder().addInputs("input1")
                    .addLayer("l1", new DenseLayer.Builder().nIn(4).nOut(5).activation(Activation.RELU).build(),
                                    "input1")
                    .addLayer("lossLayer", new CenterLossOutputLayer.Builder()
                                    .lossFunction(LossFunctions.LossFunction.MCXENT).nIn(5).nOut(numLabels)
                                    .lambda(lambda).activation(Activation.SOFTMAX).build(), "l1")
                    .setOutputs("lossLayer").pretrain(false).backprop(true).build();

    ComputationGraph graph = new ComputationGraph(conf);
    graph.init();

    return graph;
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:19,代码来源:CenterLossOutputLayerTest.java

示例14: testCifarDataSetIteratorReset

import org.deeplearning4j.nn.weights.WeightInit; //导入依赖的package包/类
@Ignore // use when checking cifar dataset iterator
@Test
public void testCifarDataSetIteratorReset() {
    int epochs = 2;
    Nd4j.getRandom().setSeed(12345);
    MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
                    .weightInit(WeightInit.XAVIER).seed(12345L).list()
                    .layer(0, new DenseLayer.Builder().nIn(400).nOut(50).activation(Activation.RELU).build())
                    .layer(1, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
                                    .activation(Activation.SOFTMAX).nIn(50).nOut(10).build())
                    .pretrain(false).backprop(true)
                    .inputPreProcessor(0, new CnnToFeedForwardPreProcessor(20, 20, 1)).build();

    MultiLayerNetwork net = new MultiLayerNetwork(conf);
    net.init();
    net.setListeners(new ScoreIterationListener(1));

    MultipleEpochsIterator ds =
                    new MultipleEpochsIterator(epochs, new CifarDataSetIterator(10, 20, new int[] {20, 20, 1}));
    net.fit(ds);
    assertEquals(epochs, ds.epochs);
    assertEquals(2, ds.batch);
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:24,代码来源:MultipleEpochsIteratorTest.java

示例15: complete

import org.deeplearning4j.nn.weights.WeightInit; //导入依赖的package包/类
public MultiLayerConfiguration.Builder complete() {
    final int numRows = 28;
    final int numColumns = 28;
    int nChannels = 1;
    int outputNum = 10;
    int seed = 123;

    MultiLayerConfiguration.Builder builder = new NeuralNetConfiguration.Builder().seed(seed)
                    .optimizationAlgo(OptimizationAlgorithm.LINE_GRADIENT_DESCENT).list()
                    .layer(0, new org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder(new int[] {10, 10},
                                    new int[] {2, 2}).nIn(nChannels).nOut(6).build())
                    .layer(1, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX, new int[] {2, 2})
                                    .build())
                    .layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
                                    .nIn(5 * 5 * 1 * 6) //216
                                    .nOut(outputNum).weightInit(WeightInit.XAVIER).activation(Activation.SOFTMAX)
                                    .build())
                    .inputPreProcessor(0, new FeedForwardToCnnPreProcessor(numRows, numColumns, nChannels))
                    .inputPreProcessor(2, new CnnToFeedForwardPreProcessor(5, 5, 6)).backprop(true).pretrain(false);

    return builder;
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:23,代码来源:ConvolutionLayerSetupTest.java


注:本文中的org.deeplearning4j.nn.weights.WeightInit类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。