本文整理汇总了Java中org.deeplearning4j.nn.conf.layers.LocalResponseNormalization类的典型用法代码示例。如果您正苦于以下问题:Java LocalResponseNormalization类的具体用法?Java LocalResponseNormalization怎么用?Java LocalResponseNormalization使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
LocalResponseNormalization类属于org.deeplearning4j.nn.conf.layers包,在下文中一共展示了LocalResponseNormalization类的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: testMultiCNNLayer
import org.deeplearning4j.nn.conf.layers.LocalResponseNormalization; //导入依赖的package包/类
@Test
public void testMultiCNNLayer() throws Exception {
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.optimizationAlgo(OptimizationAlgorithm.LINE_GRADIENT_DESCENT).seed(123).list()
.layer(0, new ConvolutionLayer.Builder().nIn(1).nOut(6).weightInit(WeightInit.XAVIER)
.activation(Activation.RELU).build())
.layer(1, new LocalResponseNormalization.Builder().build()).layer(2,
new DenseLayer.Builder()
.nOut(2).build())
.layer(3, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
.weightInit(WeightInit.XAVIER).activation(Activation.SOFTMAX).nIn(2).nOut(10)
.build())
.backprop(true).pretrain(false).setInputType(InputType.convolutionalFlat(28, 28, 1)).build();
MultiLayerNetwork network = new MultiLayerNetwork(conf);
network.init();
DataSetIterator iter = new MnistDataSetIterator(2, 2);
DataSet next = iter.next();
network.fit(next);
}
示例2: KerasLRN
import org.deeplearning4j.nn.conf.layers.LocalResponseNormalization; //导入依赖的package包/类
/**
* Constructor from parsed Keras layer configuration dictionary.
*
* @param layerConfig dictionary containing Keras layer configuration
* @param enforceTrainingConfig whether to enforce training-related configuration options
* @throws InvalidKerasConfigurationException
* @throws UnsupportedKerasConfigurationException
*/
public KerasLRN(Map<String, Object> layerConfig, boolean enforceTrainingConfig)
throws InvalidKerasConfigurationException, UnsupportedKerasConfigurationException {
super(layerConfig, enforceTrainingConfig);
Map<String, Object> lrnParams = KerasLayerUtils.getInnerLayerConfigFromConfig(layerConfig, conf);
LocalResponseNormalization.Builder builder = new LocalResponseNormalization.Builder().name(this.layerName)
.dropOut(this.dropout).alpha((double) lrnParams.get("alpha"))
.beta((double) lrnParams.get("beta")).k((int) lrnParams.get("k")).n((int) lrnParams.get("n"));
this.layer = builder.build();
this.vertex = null;
}
示例3: testGradientLRNSimple
import org.deeplearning4j.nn.conf.layers.LocalResponseNormalization; //导入依赖的package包/类
@Test
public void testGradientLRNSimple() {
Nd4j.getRandom().setSeed(12345);
int minibatch = 10;
int depth = 6;
int hw = 5;
int nOut = 4;
INDArray input = Nd4j.rand(new int[] {minibatch, depth, hw, hw});
INDArray labels = Nd4j.zeros(minibatch, nOut);
Random r = new Random(12345);
for (int i = 0; i < minibatch; i++) {
labels.putScalar(i, r.nextInt(nOut), 1.0);
}
MultiLayerConfiguration.Builder builder = new NeuralNetConfiguration.Builder().updater(new NoOp())
.seed(12345L).weightInit(WeightInit.DISTRIBUTION)
.dist(new NormalDistribution(0, 2)).list()
.layer(0, new ConvolutionLayer.Builder().nOut(6).kernelSize(2, 2).stride(1, 1)
.activation(Activation.TANH).build())
.layer(1, new LocalResponseNormalization.Builder().build())
.layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
.activation(Activation.SOFTMAX).nOut(nOut).build())
.setInputType(InputType.convolutional(hw, hw, depth)).pretrain(false).backprop(true);
MultiLayerNetwork mln = new MultiLayerNetwork(builder.build());
mln.init();
if (PRINT_RESULTS) {
for (int j = 0; j < mln.getnLayers(); j++)
System.out.println("Layer " + j + " # params: " + mln.getLayer(j).numParams());
}
boolean gradOK = GradientCheckUtil.checkGradients(mln, DEFAULT_EPS, DEFAULT_MAX_REL_ERROR,
DEFAULT_MIN_ABS_ERROR, PRINT_RESULTS, RETURN_ON_FIRST_FAILURE, input, labels);
assertTrue(gradOK);
}
示例4: doBefore
import org.deeplearning4j.nn.conf.layers.LocalResponseNormalization; //导入依赖的package包/类
@Before
public void doBefore() {
NeuralNetConfiguration conf = new NeuralNetConfiguration.Builder()
.gradientNormalization(GradientNormalization.RenormalizeL2PerLayer).seed(123)
.layer(new LocalResponseNormalization.Builder().k(2).n(5).alpha(1e-4).beta(0.75).build())
.build();
layer = new LocalResponseNormalization().instantiate(conf, null, 0, null, false);
activationsActual = layer.activate(x);
}
示例5: testRegularization
import org.deeplearning4j.nn.conf.layers.LocalResponseNormalization; //导入依赖的package包/类
@Test
public void testRegularization() {
// Confirm a structure with regularization true will not throw an error
NeuralNetConfiguration conf = new NeuralNetConfiguration.Builder()
.gradientNormalization(GradientNormalization.RenormalizeL2PerLayer).l1(0.2)
.l2(0.1).seed(123)
.layer(new LocalResponseNormalization.Builder().k(2).n(5).alpha(1e-4).beta(0.75).build())
.build();
}
示例6: alexnetModel
import org.deeplearning4j.nn.conf.layers.LocalResponseNormalization; //导入依赖的package包/类
public MultiLayerNetwork alexnetModel(int numLabels) {
/**
* AlexNet model interpretation based on the original paper ImageNet Classification with Deep Convolutional Neural Networks
* and the imagenetExample code referenced.
* http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
**/
double nonZeroBias = 1;
double dropOut = 0.5;
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(seed)
.weightInit(WeightInit.DISTRIBUTION)
.dist(new NormalDistribution(0.0, 0.01))
.activation(Activation.RELU)
.updater(Updater.NESTEROVS)
.iterations(iterations)
.gradientNormalization(GradientNormalization.RenormalizeL2PerLayer) // normalize to prevent vanishing or exploding gradients
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.learningRate(1e-2)
.biasLearningRate(1e-2*2)
.learningRateDecayPolicy(LearningRatePolicy.Step)
.lrPolicyDecayRate(0.1)
.lrPolicySteps(100000)
.regularization(true)
.l2(5 * 1e-4)
.momentum(0.9)
.miniBatch(false)
.list()
.layer(0, convInit("cnn1", channels, 96, new int[]{11, 11}, new int[]{4, 4}, new int[]{3, 3}, 0))
.layer(1, new LocalResponseNormalization.Builder().name("lrn1").build())
.layer(2, maxPool("maxpool1", new int[]{3,3}))
.layer(3, conv5x5("cnn2", 256, new int[] {1,1}, new int[] {2,2}, nonZeroBias))
.layer(4, new LocalResponseNormalization.Builder().name("lrn2").build())
.layer(5, maxPool("maxpool2", new int[]{3,3}))
.layer(6,conv3x3("cnn3", 384, 0))
.layer(7,conv3x3("cnn4", 384, nonZeroBias))
.layer(8,conv3x3("cnn5", 256, nonZeroBias))
.layer(9, maxPool("maxpool3", new int[]{3,3}))
.layer(10, fullyConnected("ffn1", 4096, nonZeroBias, dropOut, new GaussianDistribution(0, 0.005)))
.layer(11, fullyConnected("ffn2", 4096, nonZeroBias, dropOut, new GaussianDistribution(0, 0.005)))
.layer(12, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
.name("output")
.nOut(numLabels)
.activation(Activation.SOFTMAX)
.build())
.backprop(true)
.pretrain(false)
.setInputType(InputType.convolutional(height, width, channels))
.build();
return new MultiLayerNetwork(conf);
}
示例7: getLocalResponseNormalization
import org.deeplearning4j.nn.conf.layers.LocalResponseNormalization; //导入依赖的package包/类
/**
* Get DL4J LRN.
*
* @return LocalResponseNormalization
*/
public LocalResponseNormalization getLocalResponseNormalization() {
return (LocalResponseNormalization) this.layer;
}