当前位置: 首页>>代码示例>>Java>>正文


Java ConvolutionLayer类代码示例

本文整理汇总了Java中org.deeplearning4j.nn.conf.layers.ConvolutionLayer的典型用法代码示例。如果您正苦于以下问题:Java ConvolutionLayer类的具体用法?Java ConvolutionLayer怎么用?Java ConvolutionLayer使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


ConvolutionLayer类属于org.deeplearning4j.nn.conf.layers包,在下文中一共展示了ConvolutionLayer类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: getConfiguration

import org.deeplearning4j.nn.conf.layers.ConvolutionLayer; //导入依赖的package包/类
@Override
   protected MultiLayerConfiguration getConfiguration()
   {
final ConvulationalNetParameters parameters = (ConvulationalNetParameters) this.parameters;
final MultiLayerConfiguration.Builder builder = new NeuralNetConfiguration.Builder().seed(parameters.getSeed())
	.iterations(parameters.getIterations())
	.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).list(2)
	.layer(0,
		new ConvolutionLayer.Builder(new int[] { 1, 1 }).nIn(parameters.getInputSize()).nOut(1000)
			.activation("relu").weightInit(WeightInit.RELU).build())
	.layer(1,
		new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT).nOut(parameters.getOutputSize())
			.weightInit(WeightInit.XAVIER).activation("softmax").build())
	.backprop(true).pretrain(false);

new ConvolutionLayerSetup(builder, parameters.getRows(), parameters.getColumns(), parameters.getChannels());

return builder.build();
   }
 
开发者ID:amrabed,项目名称:DL4J,代码行数:20,代码来源:ConvolutionalNetModel.java

示例2: getConfiguration

import org.deeplearning4j.nn.conf.layers.ConvolutionLayer; //导入依赖的package包/类
@Override
   protected MultiLayerConfiguration getConfiguration()
   {
final ConvulationalNetParameters parameters = (ConvulationalNetParameters) this.parameters;
final MultiLayerConfiguration.Builder builder = new NeuralNetConfiguration.Builder().seed(parameters.getSeed())
	.iterations(parameters.getIterations())
	.gradientNormalization(GradientNormalization.RenormalizeL2PerLayer)
	.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).list(3)
	.layer(0,
		new ConvolutionLayer.Builder(10, 10).stride(2, 2).nIn(parameters.getChannels()).nOut(6)
			.weightInit(WeightInit.XAVIER).activation("relu").build())
	.layer(1, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX, new int[] { 2, 2 }).build())
	.layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
		.nOut(parameters.getOutputSize()).weightInit(WeightInit.XAVIER).activation("softmax").build())
	.backprop(true).pretrain(false);

new ConvolutionLayerSetup(builder, parameters.getRows(), parameters.getColumns(), parameters.getChannels());

return builder.build();
   }
 
开发者ID:amrabed,项目名称:DL4J,代码行数:21,代码来源:ConvolutionalNetModel.java

示例3: getOriginalNet

import org.deeplearning4j.nn.conf.layers.ConvolutionLayer; //导入依赖的package包/类
public static MultiLayerNetwork getOriginalNet(int seed){
    MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
            .seed(seed)
            .weightInit(WeightInit.XAVIER)
            .activation(Activation.TANH)
            .convolutionMode(ConvolutionMode.Same)
            .updater(new Sgd(0.3))
            .list()
            .layer(new ConvolutionLayer.Builder().nOut(3).kernelSize(2,2).stride(1,1).build())
            .layer(new SubsamplingLayer.Builder().kernelSize(2,2).stride(1,1).build())
            .layer(new ConvolutionLayer.Builder().nIn(3).nOut(3).kernelSize(2,2).stride(1,1).build())
            .layer(new DenseLayer.Builder().nOut(64).build())
            .layer(new DenseLayer.Builder().nIn(64).nOut(64).build())
            .layer(new OutputLayer.Builder().nIn(64).nOut(10).lossFunction(LossFunctions.LossFunction.MSE).build())
            .setInputType(InputType.convolutionalFlat(28,28,1))
            .build();


    MultiLayerNetwork net = new MultiLayerNetwork(conf);
    net.init();
    return net;
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:23,代码来源:TestFrozenLayers.java

示例4: getOriginalGraph

import org.deeplearning4j.nn.conf.layers.ConvolutionLayer; //导入依赖的package包/类
public static ComputationGraph getOriginalGraph(int seed){
    ComputationGraphConfiguration conf = new NeuralNetConfiguration.Builder()
            .seed(seed)
            .weightInit(WeightInit.XAVIER)
            .activation(Activation.TANH)
            .convolutionMode(ConvolutionMode.Same)
            .updater(new Sgd(0.3))
            .graphBuilder()
            .addInputs("in")
            .layer("0", new ConvolutionLayer.Builder().nOut(3).kernelSize(2,2).stride(1,1).build(), "in")
            .layer("1", new SubsamplingLayer.Builder().kernelSize(2,2).stride(1,1).build(), "0")
            .layer("2", new ConvolutionLayer.Builder().nIn(3).nOut(3).kernelSize(2,2).stride(1,1).build(), "1")
            .layer("3", new DenseLayer.Builder().nOut(64).build(), "2")
            .layer("4", new DenseLayer.Builder().nIn(64).nOut(64).build(), "3")
            .layer("5", new OutputLayer.Builder().nIn(64).nOut(10).lossFunction(LossFunctions.LossFunction.MSE).build(), "4")
            .setOutputs("5")
            .setInputTypes(InputType.convolutionalFlat(28,28,1))
            .build();


    ComputationGraph net = new ComputationGraph(conf);
    net.init();
    return net;
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:25,代码来源:TestFrozenLayers.java

示例5: testMultiCNNLayer

import org.deeplearning4j.nn.conf.layers.ConvolutionLayer; //导入依赖的package包/类
@Test
public void testMultiCNNLayer() throws Exception {
    MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
                    .optimizationAlgo(OptimizationAlgorithm.LINE_GRADIENT_DESCENT).seed(123).list()
                    .layer(0, new ConvolutionLayer.Builder().nIn(1).nOut(6).weightInit(WeightInit.XAVIER)
                                    .activation(Activation.RELU).build())
                    .layer(1, new LocalResponseNormalization.Builder().build()).layer(2,
                                    new DenseLayer.Builder()
                                                    .nOut(2).build())
                    .layer(3, new OutputLayer.Builder(LossFunctions.LossFunction.MCXENT)
                                    .weightInit(WeightInit.XAVIER).activation(Activation.SOFTMAX).nIn(2).nOut(10)
                                    .build())
                    .backprop(true).pretrain(false).setInputType(InputType.convolutionalFlat(28, 28, 1)).build();

    MultiLayerNetwork network = new MultiLayerNetwork(conf);
    network.init();
    DataSetIterator iter = new MnistDataSetIterator(2, 2);
    DataSet next = iter.next();

    network.fit(next);
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:22,代码来源:LocalResponseTest.java

示例6: getCNNMLNConfig

import org.deeplearning4j.nn.conf.layers.ConvolutionLayer; //导入依赖的package包/类
private static MultiLayerNetwork getCNNMLNConfig(boolean backprop, boolean pretrain) {
    int outputNum = 10;
    int seed = 123;

    MultiLayerConfiguration.Builder conf =
                    new NeuralNetConfiguration.Builder().seed(seed)
                                    .optimizationAlgo(OptimizationAlgorithm.LINE_GRADIENT_DESCENT).list()
                                    .layer(0, new ConvolutionLayer.Builder(new int[] {10, 10}).nOut(6).build())
                                    .layer(1, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX,
                                                    new int[] {2, 2}).stride(1, 1).build())
                                    .layer(2, new OutputLayer.Builder(
                                                    LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
                                                                    .nOut(outputNum).weightInit(WeightInit.XAVIER)
                                                                    .activation(Activation.SOFTMAX).build())
                                    .setInputType(InputType.convolutionalFlat(28, 28, 1)).backprop(backprop)
                                    .pretrain(pretrain);

    MultiLayerNetwork model = new MultiLayerNetwork(conf.build());
    model.init();

    return model;
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:23,代码来源:ConvolutionLayerTest.java

示例7: testMultiChannel

import org.deeplearning4j.nn.conf.layers.ConvolutionLayer; //导入依赖的package包/类
@Test
public void testMultiChannel() throws Exception {
    INDArray in = Nd4j.rand(new int[] {10, 3, 28, 28});
    INDArray labels = Nd4j.rand(10, 2);
    DataSet next = new DataSet(in, labels);

    NeuralNetConfiguration.ListBuilder builder = (NeuralNetConfiguration.ListBuilder) incompleteLFW();
    builder.setInputType(InputType.convolutional(28, 28, 3));
    MultiLayerConfiguration conf = builder.build();
    ConvolutionLayer layer2 = (ConvolutionLayer) conf.getConf(2).getLayer();
    assertEquals(6, layer2.getNIn());

    MultiLayerNetwork network = new MultiLayerNetwork(conf);
    network.init();
    network.fit(next);
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:17,代码来源:ConvolutionLayerSetupTest.java

示例8: testLRN

import org.deeplearning4j.nn.conf.layers.ConvolutionLayer; //导入依赖的package包/类
@Test
public void testLRN() throws Exception {
    List<String> labels = new ArrayList<>(Arrays.asList("Zico", "Ziwang_Xu"));
    String rootDir = new ClassPathResource("lfwtest").getFile().getAbsolutePath();

    RecordReader reader = new ImageRecordReader(28, 28, 3);
    reader.initialize(new FileSplit(new File(rootDir)));
    DataSetIterator recordReader = new RecordReaderDataSetIterator(reader, 10, 1, labels.size());
    labels.remove("lfwtest");
    NeuralNetConfiguration.ListBuilder builder = (NeuralNetConfiguration.ListBuilder) incompleteLRN();
    builder.setInputType(InputType.convolutional(28, 28, 3));

    MultiLayerConfiguration conf = builder.build();

    ConvolutionLayer layer2 = (ConvolutionLayer) conf.getConf(3).getLayer();
    assertEquals(6, layer2.getNIn());

}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:19,代码来源:ConvolutionLayerSetupTest.java

示例9: incompleteLRN

import org.deeplearning4j.nn.conf.layers.ConvolutionLayer; //导入依赖的package包/类
public MultiLayerConfiguration.Builder incompleteLRN() {
    MultiLayerConfiguration.Builder builder =
                    new NeuralNetConfiguration.Builder().seed(3)
                                    .optimizationAlgo(OptimizationAlgorithm.CONJUGATE_GRADIENT).list()
                                    .layer(0, new org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder(
                                                    new int[] {5, 5}).nOut(6).build())
                                    .layer(1, new org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder(
                                                    new int[] {2, 2}).build())
                                    .layer(2, new LocalResponseNormalization.Builder().build())
                                    .layer(3, new org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder(
                                                    new int[] {5, 5}).nOut(6).build())
                                    .layer(4, new org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder(
                                                    new int[] {2, 2}).build())
                                    .layer(5, new org.deeplearning4j.nn.conf.layers.OutputLayer.Builder(
                                                    LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD).nOut(2)
                                                                    .build());
    return builder;
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:19,代码来源:ConvolutionLayerSetupTest.java

示例10: incompleteLFW

import org.deeplearning4j.nn.conf.layers.ConvolutionLayer; //导入依赖的package包/类
public MultiLayerConfiguration.Builder incompleteLFW() {
    MultiLayerConfiguration.Builder builder =
                    new NeuralNetConfiguration.Builder().seed(3)
                                    .optimizationAlgo(OptimizationAlgorithm.CONJUGATE_GRADIENT).list()
                                    .layer(0, new org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder(
                                                    new int[] {5, 5}).nOut(6).build())
                                    .layer(1, new org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder(
                                                    new int[] {2, 2}).build())
                                    .layer(2, new org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder(
                                                    new int[] {5, 5}).nOut(6).build())
                                    .layer(3, new org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder(
                                                    new int[] {2, 2}).build())
                                    .layer(4, new org.deeplearning4j.nn.conf.layers.OutputLayer.Builder(
                                                    LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD).nOut(2)
                                                                    .build());
    return builder;
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:18,代码来源:ConvolutionLayerSetupTest.java

示例11: incompleteMnistLenet

import org.deeplearning4j.nn.conf.layers.ConvolutionLayer; //导入依赖的package包/类
public MultiLayerConfiguration.Builder incompleteMnistLenet() {
    MultiLayerConfiguration.Builder builder =
                    new NeuralNetConfiguration.Builder().seed(3)
                                    .optimizationAlgo(OptimizationAlgorithm.CONJUGATE_GRADIENT).list()
                                    .layer(0, new org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder(
                                                    new int[] {5, 5}).nIn(1).nOut(20).build())
                                    .layer(1, new org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder(
                                                    new int[] {2, 2}, new int[] {2, 2}).build())
                                    .layer(2, new org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder(
                                                    new int[] {5, 5}).nIn(20).nOut(50).build())
                                    .layer(3, new org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder(
                                                    new int[] {2, 2}, new int[] {2, 2}).build())
                                    .layer(4, new org.deeplearning4j.nn.conf.layers.DenseLayer.Builder().nOut(500)
                                                    .build())
                                    .layer(5, new org.deeplearning4j.nn.conf.layers.OutputLayer.Builder(
                                                    LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
                                                                    .activation(Activation.SOFTMAX).nOut(10)
                                                                    .build());
    return builder;
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:21,代码来源:ConvolutionLayerSetupTest.java

示例12: mnistLenet

import org.deeplearning4j.nn.conf.layers.ConvolutionLayer; //导入依赖的package包/类
public MultiLayerConfiguration mnistLenet() {
    MultiLayerConfiguration builder =
                    new NeuralNetConfiguration.Builder().seed(3)
                                    .optimizationAlgo(OptimizationAlgorithm.CONJUGATE_GRADIENT).list()
                                    .layer(0, new org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder(
                                                    new int[] {5, 5}).nIn(1).nOut(6).build())
                                    .layer(1, new org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder(
                                                    new int[] {5, 5}, new int[] {2, 2}).build())
                                    .layer(2, new org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder(
                                                    new int[] {5, 5}).nIn(1).nOut(6).build())
                                    .layer(3, new org.deeplearning4j.nn.conf.layers.SubsamplingLayer.Builder(
                                                    new int[] {5, 5}, new int[] {2, 2}).build())
                                    .layer(4, new org.deeplearning4j.nn.conf.layers.OutputLayer.Builder(
                                                    LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD).nIn(150)
                                                                    .nOut(10).build())
                                    .build();
    return builder;
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:19,代码来源:ConvolutionLayerSetupTest.java

示例13: inComplete

import org.deeplearning4j.nn.conf.layers.ConvolutionLayer; //导入依赖的package包/类
public MultiLayerConfiguration.Builder inComplete() {
    int nChannels = 1;
    int outputNum = 10;
    int seed = 123;

    MultiLayerConfiguration.Builder builder = new NeuralNetConfiguration.Builder().seed(seed)
                    .optimizationAlgo(OptimizationAlgorithm.LINE_GRADIENT_DESCENT).list()
                    .layer(0, new org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder(new int[] {10, 10},
                                    new int[] {2, 2}).nIn(nChannels).nOut(6).build())
                    .layer(1, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX, new int[] {2, 2})
                                    .build())
                    .layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
                                    .nOut(outputNum).weightInit(WeightInit.XAVIER).activation(Activation.SOFTMAX)
                                    .build())
                    .backprop(true).pretrain(false);

    return builder;
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:19,代码来源:ConvolutionLayerSetupTest.java

示例14: complete

import org.deeplearning4j.nn.conf.layers.ConvolutionLayer; //导入依赖的package包/类
public MultiLayerConfiguration.Builder complete() {
    final int numRows = 28;
    final int numColumns = 28;
    int nChannels = 1;
    int outputNum = 10;
    int seed = 123;

    MultiLayerConfiguration.Builder builder = new NeuralNetConfiguration.Builder().seed(seed)
                    .optimizationAlgo(OptimizationAlgorithm.LINE_GRADIENT_DESCENT).list()
                    .layer(0, new org.deeplearning4j.nn.conf.layers.ConvolutionLayer.Builder(new int[] {10, 10},
                                    new int[] {2, 2}).nIn(nChannels).nOut(6).build())
                    .layer(1, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX, new int[] {2, 2})
                                    .build())
                    .layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
                                    .nIn(5 * 5 * 1 * 6) //216
                                    .nOut(outputNum).weightInit(WeightInit.XAVIER).activation(Activation.SOFTMAX)
                                    .build())
                    .inputPreProcessor(0, new FeedForwardToCnnPreProcessor(numRows, numColumns, nChannels))
                    .inputPreProcessor(2, new CnnToFeedForwardPreProcessor(5, 5, 6)).backprop(true).pretrain(false);

    return builder;
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:23,代码来源:ConvolutionLayerSetupTest.java

示例15: testSubSamplingWithPadding

import org.deeplearning4j.nn.conf.layers.ConvolutionLayer; //导入依赖的package包/类
@Test
public void testSubSamplingWithPadding() {

    MultiLayerConfiguration.Builder builder = new NeuralNetConfiguration.Builder().list()
                    .layer(0, new ConvolutionLayer.Builder(2, 2).padding(0, 0).stride(2, 2).nIn(1).nOut(3).build()) //(28-2+0)/2+1 = 14
                    .layer(1, new SubsamplingLayer.Builder().kernelSize(2, 2).padding(1, 1).stride(2, 2).build()) //(14-2+2)/2+1 = 8 -> 8x8x3
                    .layer(2, new OutputLayer.Builder().nOut(3).build())
                    .setInputType(InputType.convolutional(28, 28, 1));

    MultiLayerConfiguration conf = builder.build();

    assertNotNull(conf.getInputPreProcess(2));
    assertTrue(conf.getInputPreProcess(2) instanceof CnnToFeedForwardPreProcessor);
    CnnToFeedForwardPreProcessor proc = (CnnToFeedForwardPreProcessor) conf.getInputPreProcess(2);
    assertEquals(8, proc.getInputHeight());
    assertEquals(8, proc.getInputWidth());
    assertEquals(3, proc.getNumChannels());

    assertEquals(8 * 8 * 3, ((FeedForwardLayer) conf.getConf(2).getLayer()).getNIn());
}
 
开发者ID:deeplearning4j,项目名称:deeplearning4j,代码行数:21,代码来源:ConvolutionLayerSetupTest.java


注:本文中的org.deeplearning4j.nn.conf.layers.ConvolutionLayer类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。