本文整理汇总了Java中org.deeplearning4j.nn.conf.GradientNormalization类的典型用法代码示例。如果您正苦于以下问题:Java GradientNormalization类的具体用法?Java GradientNormalization怎么用?Java GradientNormalization使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
GradientNormalization类属于org.deeplearning4j.nn.conf包,在下文中一共展示了GradientNormalization类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: softMaxRegression
import org.deeplearning4j.nn.conf.GradientNormalization; //导入依赖的package包/类
private static MultiLayerNetwork softMaxRegression(int seed,
int iterations, int numRows, int numColumns, int outputNum) {
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(seed)
.gradientNormalization(
GradientNormalization.ClipElementWiseAbsoluteValue)
.gradientNormalizationThreshold(1.0)
.iterations(iterations)
.momentum(0.5)
.momentumAfter(Collections.singletonMap(3, 0.9))
.optimizationAlgo(OptimizationAlgorithm.CONJUGATE_GRADIENT)
.list(1)
.layer(0,
new OutputLayer.Builder(
LossFunction.NEGATIVELOGLIKELIHOOD)
.activation("softmax")
.nIn(numColumns * numRows).nOut(outputNum)
.build()).pretrain(true).backprop(false)
.build();
MultiLayerNetwork model = new MultiLayerNetwork(conf);
return model;
}
开发者ID:PacktPublishing,项目名称:Machine-Learning-End-to-Endguide-for-Java-developers,代码行数:25,代码来源:NeuralNetworks.java
示例2: getConfiguration
import org.deeplearning4j.nn.conf.GradientNormalization; //导入依赖的package包/类
@Override
protected MultiLayerConfiguration getConfiguration()
{
return new NeuralNetConfiguration.Builder().seed(parameters.getSeed())
.gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue)
.gradientNormalizationThreshold(1.0).iterations(parameters.getIterations()).momentum(0.5)
.momentumAfter(Collections.singletonMap(3, 0.9))
.optimizationAlgo(OptimizationAlgorithm.CONJUGATE_GRADIENT).list(4)
.layer(0,
new AutoEncoder.Builder().nIn(parameters.getInputSize()).nOut(500).weightInit(WeightInit.XAVIER)
.lossFunction(LossFunction.RMSE_XENT).corruptionLevel(0.3).build())
.layer(1, new AutoEncoder.Builder().nIn(500).nOut(250).weightInit(WeightInit.XAVIER)
.lossFunction(LossFunction.RMSE_XENT).corruptionLevel(0.3)
.build())
.layer(2,
new AutoEncoder.Builder().nIn(250).nOut(200).weightInit(WeightInit.XAVIER)
.lossFunction(LossFunction.RMSE_XENT).corruptionLevel(0.3).build())
.layer(3, new OutputLayer.Builder(LossFunction.NEGATIVELOGLIKELIHOOD).activation("softmax").nIn(200)
.nOut(parameters.getOutputSize()).build())
.pretrain(true).backprop(false).build();
}
示例3: getConfiguration
import org.deeplearning4j.nn.conf.GradientNormalization; //导入依赖的package包/类
@Override
protected MultiLayerConfiguration getConfiguration()
{
final ConvulationalNetParameters parameters = (ConvulationalNetParameters) this.parameters;
final MultiLayerConfiguration.Builder builder = new NeuralNetConfiguration.Builder().seed(parameters.getSeed())
.iterations(parameters.getIterations())
.gradientNormalization(GradientNormalization.RenormalizeL2PerLayer)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT).list(3)
.layer(0,
new ConvolutionLayer.Builder(10, 10).stride(2, 2).nIn(parameters.getChannels()).nOut(6)
.weightInit(WeightInit.XAVIER).activation("relu").build())
.layer(1, new SubsamplingLayer.Builder(SubsamplingLayer.PoolingType.MAX, new int[] { 2, 2 }).build())
.layer(2, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
.nOut(parameters.getOutputSize()).weightInit(WeightInit.XAVIER).activation("softmax").build())
.backprop(true).pretrain(false);
new ConvolutionLayerSetup(builder, parameters.getRows(), parameters.getColumns(), parameters.getChannels());
return builder.build();
}
示例4: method
import org.deeplearning4j.nn.conf.GradientNormalization; //导入依赖的package包/类
@OptionMetadata(
displayName = "gradient normalization method",
description = "The gradient normalization method (default = None).",
commandLineParamName = "gradientNormalization",
commandLineParamSynopsis = "-gradientNormalization <specification>",
displayOrder = 22
)
public GradientNormalization getGradientNormalization() {
return this.gradientNormalization;
}
示例5: testImdbClassification
import org.deeplearning4j.nn.conf.GradientNormalization; //导入依赖的package包/类
@Test
public void testImdbClassification() throws Exception {
// Init data
data = DatasetLoader.loadImdb();
// Define layers
LSTM lstm1 = new LSTM();
lstm1.setNOut(3);
lstm1.setActivationFunction(new ActivationTanH());
RnnOutputLayer rnnOut = new RnnOutputLayer();
// Network config
NeuralNetConfiguration nnc = new NeuralNetConfiguration();
nnc.setL2(1e-5);
nnc.setUseRegularization(true);
nnc.setGradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue);
nnc.setGradientNormalizationThreshold(1.0);
nnc.setLearningRate(0.02);
// Config classifier
clf.setLayers(lstm1, rnnOut);
clf.setNeuralNetConfiguration(nnc);
clf.settBPTTbackwardLength(20);
clf.settBPTTforwardLength(20);
clf.setQueueSize(0);
// Randomize data
data.randomize(new Random(42));
// Reduce datasize
RemovePercentage rp = new RemovePercentage();
rp.setPercentage(95);
rp.setInputFormat(data);
data = Filter.useFilter(data, rp);
TestUtil.holdout(clf, data, 50, tii);
}
示例6: testAngerRegression
import org.deeplearning4j.nn.conf.GradientNormalization; //导入依赖的package包/类
@Test
public void testAngerRegression() throws Exception {
// Define layers
LSTM lstm1 = new LSTM();
lstm1.setNOut(32);
lstm1.setActivationFunction(new ActivationTanH());
RnnOutputLayer rnnOut = new RnnOutputLayer();
rnnOut.setLossFn(new LossMSE());
rnnOut.setActivationFunction(new ActivationIdentity());
// Network config
NeuralNetConfiguration nnc = new NeuralNetConfiguration();
nnc.setL2(1e-5);
nnc.setUseRegularization(true);
nnc.setGradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue);
nnc.setGradientNormalizationThreshold(1.0);
nnc.setLearningRate(0.02);
tii.setTruncateLength(80);
// Config classifier
clf.setLayers(lstm1, rnnOut);
clf.setNeuralNetConfiguration(nnc);
clf.settBPTTbackwardLength(20);
clf.settBPTTforwardLength(20);
// clf.setQueueSize(4);
clf.setNumEpochs(3);
final EpochListener l = new EpochListener();
l.setN(1);
clf.setIterationListener(l);
data = DatasetLoader.loadAnger();
// Randomize data
data.randomize(new Random(42));
TestUtil.holdout(clf, data, 33);
}
示例7: getModel
import org.deeplearning4j.nn.conf.GradientNormalization; //导入依赖的package包/类
public static MultiLayerNetwork getModel(int numInputs) {
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
.seed(seed)
.iterations(iterations)
.gradientNormalization(GradientNormalization.ClipElementWiseAbsoluteValue)
.gradientNormalizationThreshold(1.0)
.regularization(true)
.dropOut(Config.DROPOUT)
.updater(Config.UPDATER)
.adamMeanDecay(0.5)
.adamVarDecay(0.5)
.weightInit(WeightInit.XAVIER)
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT)
.list()
.layer(0, new RBM.Builder(RBM.HiddenUnit.BINARY, RBM.VisibleUnit.GAUSSIAN)
.nIn(numInputs).nOut(2750).dropOut(0.75)
.activation(Activation.RELU).build())
.layer(1, new RBM.Builder(RBM.HiddenUnit.BINARY, RBM.VisibleUnit.BINARY)
.nIn(2750).nOut(2000)
.activation(Activation.RELU).build())
.layer(2, new RBM.Builder(RBM.HiddenUnit.BINARY, RBM.VisibleUnit.BINARY)
.nIn(2000).nOut(1000)
.activation(Activation.RELU).build())
.layer(3, new RBM.Builder(RBM.HiddenUnit.BINARY, RBM.VisibleUnit.BINARY)
.nIn(1000).nOut(200)
.activation(Activation.RELU).build())
.layer(4, new OutputLayer.Builder(Config.LOSS_FUNCTION)
.nIn(200).nOut(Config.NUM_OUTPUTS).updater(Config.UPDATER)
.adamMeanDecay(0.6).adamVarDecay(0.7)
.build())
.pretrain(true).backprop(true)
.build();
return new MultiLayerNetwork(conf);
}
示例8: resetLayerDefaultConfig
import org.deeplearning4j.nn.conf.GradientNormalization; //导入依赖的package包/类
/**
* Reset the learning related configs of the layer to default. When instantiated with a global neural network configuration
* the parameters specified in the neural network configuration will be used.
* For internal use with the transfer learning API. Users should not have to call this method directly.
*/
public void resetLayerDefaultConfig() {
//clear the learning related params for all layers in the origConf and set to defaults
this.setIUpdater(null);
this.setWeightInit(null);
this.setBiasInit(Double.NaN);
this.setDist(null);
this.setL1(Double.NaN);
this.setL2(Double.NaN);
this.setGradientNormalization(GradientNormalization.None);
this.setGradientNormalizationThreshold(1.0);
this.iUpdater = null;
this.biasUpdater = null;
}
示例9: regressionTestLSTM1
import org.deeplearning4j.nn.conf.GradientNormalization; //导入依赖的package包/类
@Test
public void regressionTestLSTM1() throws Exception {
File f = new ClassPathResource("regression_testing/080/080_ModelSerializer_Regression_LSTM_1.zip")
.getTempFileFromArchive();
MultiLayerNetwork net = ModelSerializer.restoreMultiLayerNetwork(f, true);
MultiLayerConfiguration conf = net.getLayerWiseConfigurations();
assertEquals(3, conf.getConfs().size());
assertTrue(conf.isBackprop());
assertFalse(conf.isPretrain());
GravesLSTM l0 = (GravesLSTM) conf.getConf(0).getLayer();
assertTrue(l0.getActivationFn() instanceof ActivationTanH);
assertEquals(3, l0.getNIn());
assertEquals(4, l0.getNOut());
assertEquals(GradientNormalization.ClipElementWiseAbsoluteValue, l0.getGradientNormalization());
assertEquals(1.5, l0.getGradientNormalizationThreshold(), 1e-5);
GravesBidirectionalLSTM l1 = (GravesBidirectionalLSTM) conf.getConf(1).getLayer();
assertTrue(l1.getActivationFn() instanceof ActivationSoftSign);
assertEquals(4, l1.getNIn());
assertEquals(4, l1.getNOut());
assertEquals(GradientNormalization.ClipElementWiseAbsoluteValue, l1.getGradientNormalization());
assertEquals(1.5, l1.getGradientNormalizationThreshold(), 1e-5);
RnnOutputLayer l2 = (RnnOutputLayer) conf.getConf(2).getLayer();
assertEquals(4, l2.getNIn());
assertEquals(5, l2.getNOut());
assertTrue(l2.getActivationFn() instanceof ActivationSoftmax);
assertTrue(l2.getLossFn() instanceof LossMCXENT);
}
示例10: regressionTestCGLSTM1
import org.deeplearning4j.nn.conf.GradientNormalization; //导入依赖的package包/类
@Test
public void regressionTestCGLSTM1() throws Exception {
File f = new ClassPathResource("regression_testing/080/080_ModelSerializer_Regression_CG_LSTM_1.zip")
.getTempFileFromArchive();
ComputationGraph net = ModelSerializer.restoreComputationGraph(f, true);
ComputationGraphConfiguration conf = net.getConfiguration();
assertEquals(3, conf.getVertices().size());
assertTrue(conf.isBackprop());
assertFalse(conf.isPretrain());
GravesLSTM l0 = (GravesLSTM) ((LayerVertex) conf.getVertices().get("0")).getLayerConf().getLayer();
assertTrue(l0.getActivationFn() instanceof ActivationTanH);
assertEquals(3, l0.getNIn());
assertEquals(4, l0.getNOut());
assertEquals(GradientNormalization.ClipElementWiseAbsoluteValue, l0.getGradientNormalization());
assertEquals(1.5, l0.getGradientNormalizationThreshold(), 1e-5);
GravesBidirectionalLSTM l1 =
(GravesBidirectionalLSTM) ((LayerVertex) conf.getVertices().get("1")).getLayerConf().getLayer();
assertTrue(l1.getActivationFn() instanceof ActivationSoftSign);
assertEquals(4, l1.getNIn());
assertEquals(4, l1.getNOut());
assertEquals(GradientNormalization.ClipElementWiseAbsoluteValue, l1.getGradientNormalization());
assertEquals(1.5, l1.getGradientNormalizationThreshold(), 1e-5);
RnnOutputLayer l2 = (RnnOutputLayer) ((LayerVertex) conf.getVertices().get("2")).getLayerConf().getLayer();
assertEquals(4, l2.getNIn());
assertEquals(5, l2.getNOut());
assertTrue(l2.getActivationFn() instanceof ActivationSoftmax);
assertTrue(l2.getLossFn() instanceof LossMCXENT);
}
示例11: regressionTestLSTM1
import org.deeplearning4j.nn.conf.GradientNormalization; //导入依赖的package包/类
@Test
public void regressionTestLSTM1() throws Exception {
File f = new ClassPathResource("regression_testing/071/071_ModelSerializer_Regression_LSTM_1.zip")
.getTempFileFromArchive();
MultiLayerNetwork net = ModelSerializer.restoreMultiLayerNetwork(f, true);
MultiLayerConfiguration conf = net.getLayerWiseConfigurations();
assertEquals(3, conf.getConfs().size());
assertTrue(conf.isBackprop());
assertFalse(conf.isPretrain());
GravesLSTM l0 = (GravesLSTM) conf.getConf(0).getLayer();
assertEquals("tanh", l0.getActivationFn().toString());
assertEquals(3, l0.getNIn());
assertEquals(4, l0.getNOut());
assertEquals(GradientNormalization.ClipElementWiseAbsoluteValue, l0.getGradientNormalization());
assertEquals(1.5, l0.getGradientNormalizationThreshold(), 1e-5);
GravesBidirectionalLSTM l1 = (GravesBidirectionalLSTM) conf.getConf(1).getLayer();
assertEquals("softsign", l1.getActivationFn().toString());
assertEquals(4, l1.getNIn());
assertEquals(4, l1.getNOut());
assertEquals(GradientNormalization.ClipElementWiseAbsoluteValue, l1.getGradientNormalization());
assertEquals(1.5, l1.getGradientNormalizationThreshold(), 1e-5);
RnnOutputLayer l2 = (RnnOutputLayer) conf.getConf(2).getLayer();
assertEquals(4, l2.getNIn());
assertEquals(5, l2.getNOut());
assertEquals("softmax", l2.getActivationFn().toString());
assertTrue(l2.getLossFn() instanceof LossMCXENT);
}
示例12: regressionTestCGLSTM1
import org.deeplearning4j.nn.conf.GradientNormalization; //导入依赖的package包/类
@Test
public void regressionTestCGLSTM1() throws Exception {
File f = new ClassPathResource("regression_testing/071/071_ModelSerializer_Regression_CG_LSTM_1.zip")
.getTempFileFromArchive();
ComputationGraph net = ModelSerializer.restoreComputationGraph(f, true);
ComputationGraphConfiguration conf = net.getConfiguration();
assertEquals(3, conf.getVertices().size());
assertTrue(conf.isBackprop());
assertFalse(conf.isPretrain());
GravesLSTM l0 = (GravesLSTM) ((LayerVertex) conf.getVertices().get("0")).getLayerConf().getLayer();
assertEquals("tanh", l0.getActivationFn().toString());
assertEquals(3, l0.getNIn());
assertEquals(4, l0.getNOut());
assertEquals(GradientNormalization.ClipElementWiseAbsoluteValue, l0.getGradientNormalization());
assertEquals(1.5, l0.getGradientNormalizationThreshold(), 1e-5);
GravesBidirectionalLSTM l1 =
(GravesBidirectionalLSTM) ((LayerVertex) conf.getVertices().get("1")).getLayerConf().getLayer();
assertEquals("softsign", l1.getActivationFn().toString());
assertEquals(4, l1.getNIn());
assertEquals(4, l1.getNOut());
assertEquals(GradientNormalization.ClipElementWiseAbsoluteValue, l1.getGradientNormalization());
assertEquals(1.5, l1.getGradientNormalizationThreshold(), 1e-5);
RnnOutputLayer l2 = (RnnOutputLayer) ((LayerVertex) conf.getVertices().get("2")).getLayerConf().getLayer();
assertEquals(4, l2.getNIn());
assertEquals(5, l2.getNOut());
assertEquals("softmax", l2.getActivationFn().toString());
assertTrue(l2.getLossFn() instanceof LossMCXENT);
}
示例13: regressionTestLSTM1
import org.deeplearning4j.nn.conf.GradientNormalization; //导入依赖的package包/类
@Test
public void regressionTestLSTM1() throws Exception {
File f = new ClassPathResource("regression_testing/060/060_ModelSerializer_Regression_LSTM_1.zip")
.getTempFileFromArchive();
MultiLayerNetwork net = ModelSerializer.restoreMultiLayerNetwork(f, true);
MultiLayerConfiguration conf = net.getLayerWiseConfigurations();
assertEquals(3, conf.getConfs().size());
assertTrue(conf.isBackprop());
assertFalse(conf.isPretrain());
GravesLSTM l0 = (GravesLSTM) conf.getConf(0).getLayer();
assertEquals("tanh", l0.getActivationFn().toString());
assertEquals(3, l0.getNIn());
assertEquals(4, l0.getNOut());
assertEquals(GradientNormalization.ClipElementWiseAbsoluteValue, l0.getGradientNormalization());
assertEquals(1.5, l0.getGradientNormalizationThreshold(), 1e-5);
GravesBidirectionalLSTM l1 = (GravesBidirectionalLSTM) conf.getConf(1).getLayer();
assertEquals("softsign", l1.getActivationFn().toString());
assertEquals(4, l1.getNIn());
assertEquals(4, l1.getNOut());
assertEquals(GradientNormalization.ClipElementWiseAbsoluteValue, l1.getGradientNormalization());
assertEquals(1.5, l1.getGradientNormalizationThreshold(), 1e-5);
RnnOutputLayer l2 = (RnnOutputLayer) conf.getConf(2).getLayer();
assertEquals(4, l2.getNIn());
assertEquals(5, l2.getNOut());
assertEquals("softmax", l2.getActivationFn().toString());
assertTrue(l2.getLossFn() instanceof LossMCXENT);
}
示例14: regressionTestCGLSTM1
import org.deeplearning4j.nn.conf.GradientNormalization; //导入依赖的package包/类
@Test
public void regressionTestCGLSTM1() throws Exception {
File f = new ClassPathResource("regression_testing/060/060_ModelSerializer_Regression_CG_LSTM_1.zip")
.getTempFileFromArchive();
ComputationGraph net = ModelSerializer.restoreComputationGraph(f, true);
ComputationGraphConfiguration conf = net.getConfiguration();
assertEquals(3, conf.getVertices().size());
assertTrue(conf.isBackprop());
assertFalse(conf.isPretrain());
GravesLSTM l0 = (GravesLSTM) ((LayerVertex) conf.getVertices().get("0")).getLayerConf().getLayer();
assertEquals("tanh", l0.getActivationFn().toString());
assertEquals(3, l0.getNIn());
assertEquals(4, l0.getNOut());
assertEquals(GradientNormalization.ClipElementWiseAbsoluteValue, l0.getGradientNormalization());
assertEquals(1.5, l0.getGradientNormalizationThreshold(), 1e-5);
GravesBidirectionalLSTM l1 =
(GravesBidirectionalLSTM) ((LayerVertex) conf.getVertices().get("1")).getLayerConf().getLayer();
assertEquals("softsign", l1.getActivationFn().toString());
assertEquals(4, l1.getNIn());
assertEquals(4, l1.getNOut());
assertEquals(GradientNormalization.ClipElementWiseAbsoluteValue, l1.getGradientNormalization());
assertEquals(1.5, l1.getGradientNormalizationThreshold(), 1e-5);
RnnOutputLayer l2 = (RnnOutputLayer) ((LayerVertex) conf.getVertices().get("2")).getLayerConf().getLayer();
assertEquals(4, l2.getNIn());
assertEquals(5, l2.getNOut());
assertEquals("softmax", l2.getActivationFn().toString());
assertTrue(l2.getLossFn() instanceof LossMCXENT);
}
示例15: doBefore
import org.deeplearning4j.nn.conf.GradientNormalization; //导入依赖的package包/类
@Before
public void doBefore() {
NeuralNetConfiguration conf = new NeuralNetConfiguration.Builder()
.gradientNormalization(GradientNormalization.RenormalizeL2PerLayer).seed(123)
.layer(new LocalResponseNormalization.Builder().k(2).n(5).alpha(1e-4).beta(0.75).build())
.build();
layer = new LocalResponseNormalization().instantiate(conf, null, 0, null, false);
activationsActual = layer.activate(x);
}