本文整理汇总了Java中org.deeplearning4j.models.embeddings.loader.WordVectorSerializer类的典型用法代码示例。如果您正苦于以下问题:Java WordVectorSerializer类的具体用法?Java WordVectorSerializer怎么用?Java WordVectorSerializer使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
WordVectorSerializer类属于org.deeplearning4j.models.embeddings.loader包,在下文中一共展示了WordVectorSerializer类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: testWriteWordVectorsFromWord2Vec
import org.deeplearning4j.models.embeddings.loader.WordVectorSerializer; //导入依赖的package包/类
@Test
@Ignore
public void testWriteWordVectorsFromWord2Vec() throws IOException {
WordVectors vec = WordVectorSerializer.loadGoogleModel(binaryFile, true);
WordVectorSerializer.writeWordVectors((Word2Vec) vec, pathToWriteto);
WordVectors wordVectors = WordVectorSerializer.loadTxtVectors(new File(pathToWriteto));
INDArray wordVector1 = wordVectors.getWordVectorMatrix("Morgan_Freeman");
INDArray wordVector2 = wordVectors.getWordVectorMatrix("JA_Montalbano");
assertEquals(vec.getWordVectorMatrix("Morgan_Freeman"), wordVector1);
assertEquals(vec.getWordVectorMatrix("JA_Montalbano"), wordVector2);
assertTrue(wordVector1.length() == 300);
assertTrue(wordVector2.length() == 300);
assertEquals(wordVector1.getDouble(0), 0.044423, 1e-3);
assertEquals(wordVector2.getDouble(0), 0.051964, 1e-3);
}
示例2: testFindNamesFromText
import org.deeplearning4j.models.embeddings.loader.WordVectorSerializer; //导入依赖的package包/类
@Ignore
@Test
public void testFindNamesFromText() throws IOException {
SentenceIterator iter = new BasicLineIterator("src/test/resources/chineseName.txt");
log.info("load is right!");
TokenizerFactory tokenizerFactory = new ChineseTokenizerFactory();
//tokenizerFactory.setTokenPreProcessor(new ChineseTokenizer());
//Generates a word-vector from the dataset stored in resources folder
Word2Vec vec = new Word2Vec.Builder().minWordFrequency(2).iterations(5).layerSize(100).seed(42)
.learningRate(0.1).windowSize(20).iterate(iter).tokenizerFactory(tokenizerFactory).build();
vec.fit();
WordVectorSerializer.writeWordVectors(vec, new File("src/test/resources/chineseNameWordVector.txt"));
//trains a model that can find out all names from news(Suffix txt),It uses word vector generated
// WordVectors wordVectors;
//test model,Whether the model find out name from unknow text;
}
示例3: main
import org.deeplearning4j.models.embeddings.loader.WordVectorSerializer; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
// Gets Path to Text file
String filePath = "c:/raw_sentences.txt";
log.info("Load & Vectorize Sentences....");
// Strip white space before and after for each line
SentenceIterator iter = UimaSentenceIterator.createWithPath(filePath);
// Split on white spaces in the line to get words
TokenizerFactory t = new DefaultTokenizerFactory();
t.setTokenPreProcessor(new CommonPreprocessor());
InMemoryLookupCache cache = new InMemoryLookupCache();
WeightLookupTable table = new InMemoryLookupTable.Builder()
.vectorLength(100)
.useAdaGrad(false)
.cache(cache)
.lr(0.025f).build();
log.info("Building model....");
Word2Vec vec = new Word2Vec.Builder()
.minWordFrequency(5).iterations(1)
.layerSize(100).lookupTable(table)
.stopWords(new ArrayList<String>())
.vocabCache(cache).seed(42)
.windowSize(5).iterate(iter).tokenizerFactory(t).build();
log.info("Fitting Word2Vec model....");
vec.fit();
log.info("Writing word vectors to text file....");
// Write word
WordVectorSerializer.writeWordVectors(vec, "word2vec.txt");
log.info("Closest Words:");
Collection<String> lst = vec.wordsNearest("man", 5);
System.out.println(lst);
double cosSim = vec.similarity("cruise", "voyage");
System.out.println(cosSim);
}
示例4: loadWordEmbeddings
import org.deeplearning4j.models.embeddings.loader.WordVectorSerializer; //导入依赖的package包/类
public static void loadWordEmbeddings(String wePath, String weType) {
try {
switch (weType) {
case "Google":
WordEmbeddingRelatedness.wordVectors = WordVectorSerializer.loadGoogleModel(new File(wePath), true);
break;
case "Glove":
WordEmbeddingRelatedness.wordVectors = WordVectorSerializer.loadTxtVectors(new File(wePath));
break;
default:
System.out.println("Word Embeddings type is invalid! " + weType + " is not a valid type. Please use Google or Glove model.");
System.exit(0);
}
} catch (IOException e) {
System.out.println("Could not find Word Embeddings file in " + wePath);
}
}
示例5: main
import org.deeplearning4j.models.embeddings.loader.WordVectorSerializer; //导入依赖的package包/类
/**
* args[0] input: word2vecファイル名
* args[1] input: sentimentモデル名
* args[2] input: test親フォルダ名
*
* @param args
* @throws Exception
*/
public static void main (final String[] args) throws Exception {
if (args[0]==null || args[1]==null || args[2]==null)
System.exit(1);
WordVectors wvec = WordVectorSerializer.loadTxtVectors(new File(args[0]));
MultiLayerNetwork model = ModelSerializer.restoreMultiLayerNetwork(args[1],false);
DataSetIterator test = new AsyncDataSetIterator(
new SentimentRecurrentIterator(args[2],wvec,100,300,false),1);
Evaluation evaluation = new Evaluation();
while(test.hasNext()) {
DataSet t = test.next();
INDArray features = t.getFeatures();
INDArray lables = t.getLabels();
INDArray inMask = t.getFeaturesMaskArray();
INDArray outMask = t.getLabelsMaskArray();
INDArray predicted = model.output(features,false,inMask,outMask);
evaluation.evalTimeSeries(lables,predicted,outMask);
}
System.out.println(evaluation.stats());
}
示例6: start
import org.deeplearning4j.models.embeddings.loader.WordVectorSerializer; //导入依赖的package包/类
public void start() throws Exception {
if (serializeFile().exists()) {
try {
log.info("Loading from " + serializeFile().getAbsolutePath());
paragraphVectors = WordVectorSerializer.readParagraphVectors(serializeFile());
} catch (Exception e) {
log.debug(e.getMessage(), e);
makeParagraphVectors();
}
} else {
makeParagraphVectors();
}
}
示例7: testWord2VecGoogleModelUptraining
import org.deeplearning4j.models.embeddings.loader.WordVectorSerializer; //导入依赖的package包/类
@Ignore
@Test
public void testWord2VecGoogleModelUptraining() throws Exception {
long time1 = System.currentTimeMillis();
Word2Vec vec = WordVectorSerializer.readWord2VecModel(
new File("C:\\Users\\raver\\Downloads\\GoogleNews-vectors-negative300.bin.gz"), false);
long time2 = System.currentTimeMillis();
log.info("Model loaded in {} msec", time2 - time1);
SentenceIterator iter = new BasicLineIterator(inputFile.getAbsolutePath());
// Split on white spaces in the line to get words
TokenizerFactory t = new DefaultTokenizerFactory();
t.setTokenPreProcessor(new CommonPreprocessor());
vec.setTokenizerFactory(t);
vec.setSentenceIterator(iter);
vec.getConfiguration().setUseHierarchicSoftmax(false);
vec.getConfiguration().setNegative(5.0);
vec.setElementsLearningAlgorithm(new CBOW<VocabWord>());
vec.fit();
}
示例8: testWriteWordVectors
import org.deeplearning4j.models.embeddings.loader.WordVectorSerializer; //导入依赖的package包/类
@Test
@Ignore
public void testWriteWordVectors() throws IOException {
WordVectors vec = WordVectorSerializer.loadGoogleModel(binaryFile, true);
InMemoryLookupTable lookupTable = (InMemoryLookupTable) vec.lookupTable();
InMemoryLookupCache lookupCache = (InMemoryLookupCache) vec.vocab();
WordVectorSerializer.writeWordVectors(lookupTable, lookupCache, pathToWriteto);
WordVectors wordVectors = WordVectorSerializer.loadTxtVectors(new File(pathToWriteto));
double[] wordVector1 = wordVectors.getWordVector("Morgan_Freeman");
double[] wordVector2 = wordVectors.getWordVector("JA_Montalbano");
assertTrue(wordVector1.length == 300);
assertTrue(wordVector2.length == 300);
assertEquals(Doubles.asList(wordVector1).get(0), 0.044423, 1e-3);
assertEquals(Doubles.asList(wordVector2).get(0), 0.051964, 1e-3);
}
示例9: testFromTableAndVocab
import org.deeplearning4j.models.embeddings.loader.WordVectorSerializer; //导入依赖的package包/类
@Test
@Ignore
public void testFromTableAndVocab() throws IOException {
WordVectors vec = WordVectorSerializer.loadGoogleModel(textFile, false);
InMemoryLookupTable lookupTable = (InMemoryLookupTable) vec.lookupTable();
InMemoryLookupCache lookupCache = (InMemoryLookupCache) vec.vocab();
WordVectors wordVectors = WordVectorSerializer.fromTableAndVocab(lookupTable, lookupCache);
double[] wordVector1 = wordVectors.getWordVector("Morgan_Freeman");
double[] wordVector2 = wordVectors.getWordVector("JA_Montalbano");
assertTrue(wordVector1.length == 300);
assertTrue(wordVector2.length == 300);
assertEquals(Doubles.asList(wordVector1).get(0), 0.044423, 1e-3);
assertEquals(Doubles.asList(wordVector2).get(0), 0.051964, 1e-3);
}
示例10: testStaticLoaderArchive
import org.deeplearning4j.models.embeddings.loader.WordVectorSerializer; //导入依赖的package包/类
/**
* This method tests ZIP file loading as static model
*
* @throws Exception
*/
@Test
public void testStaticLoaderArchive() throws Exception {
logger.info("Executor name: {}", Nd4j.getExecutioner().getClass().getSimpleName());
File w2v = new ClassPathResource("word2vec.dl4j/file.w2v").getFile();
WordVectors vectorsLive = WordVectorSerializer.readWord2Vec(w2v);
WordVectors vectorsStatic = WordVectorSerializer.loadStaticModel(w2v);
INDArray arrayLive = vectorsLive.getWordVectorMatrix("night");
INDArray arrayStatic = vectorsStatic.getWordVectorMatrix("night");
assertNotEquals(null, arrayLive);
assertEquals(arrayLive, arrayStatic);
}
示例11: testUnifiedLoaderArchive1
import org.deeplearning4j.models.embeddings.loader.WordVectorSerializer; //导入依赖的package包/类
@Test
public void testUnifiedLoaderArchive1() throws Exception {
logger.info("Executor name: {}", Nd4j.getExecutioner().getClass().getSimpleName());
File w2v = new ClassPathResource("word2vec.dl4j/file.w2v").getFile();
WordVectors vectorsLive = WordVectorSerializer.readWord2Vec(w2v);
WordVectors vectorsUnified = WordVectorSerializer.readWord2VecModel(w2v, false);
INDArray arrayLive = vectorsLive.getWordVectorMatrix("night");
INDArray arrayStatic = vectorsUnified.getWordVectorMatrix("night");
assertNotEquals(null, arrayLive);
assertEquals(arrayLive, arrayStatic);
assertEquals(null, ((InMemoryLookupTable) vectorsUnified.lookupTable()).getSyn1());
assertEquals(null, ((InMemoryLookupTable) vectorsUnified.lookupTable()).getSyn1Neg());
}
示例12: testUnifiedLoaderArchive2
import org.deeplearning4j.models.embeddings.loader.WordVectorSerializer; //导入依赖的package包/类
@Test
public void testUnifiedLoaderArchive2() throws Exception {
logger.info("Executor name: {}", Nd4j.getExecutioner().getClass().getSimpleName());
File w2v = new ClassPathResource("word2vec.dl4j/file.w2v").getFile();
WordVectors vectorsLive = WordVectorSerializer.readWord2Vec(w2v);
WordVectors vectorsUnified = WordVectorSerializer.readWord2VecModel(w2v, true);
INDArray arrayLive = vectorsLive.getWordVectorMatrix("night");
INDArray arrayStatic = vectorsUnified.getWordVectorMatrix("night");
assertNotEquals(null, arrayLive);
assertEquals(arrayLive, arrayStatic);
assertNotEquals(null, ((InMemoryLookupTable) vectorsUnified.lookupTable()).getSyn1());
}
示例13: testUnifiedLoaderText
import org.deeplearning4j.models.embeddings.loader.WordVectorSerializer; //导入依赖的package包/类
/**
* This method tests CSV file loading via unified loader
*
* @throws Exception
*/
@Test
public void testUnifiedLoaderText() throws Exception {
logger.info("Executor name: {}", Nd4j.getExecutioner().getClass().getSimpleName());
WordVectors vectorsLive = WordVectorSerializer.loadTxtVectors(textFile);
WordVectors vectorsUnified = WordVectorSerializer.readWord2VecModel(textFile, true);
INDArray arrayLive = vectorsLive.getWordVectorMatrix("Morgan_Freeman");
INDArray arrayStatic = vectorsUnified.getWordVectorMatrix("Morgan_Freeman");
assertNotEquals(null, arrayLive);
assertEquals(arrayLive, arrayStatic);
// we're trying EXTENDED model, but file doesn't have syn1/huffman info, so it should be silently degraded to simplified model
assertEquals(null, ((InMemoryLookupTable) vectorsUnified.lookupTable()).getSyn1());
}
示例14: testGoogleModelForInference
import org.deeplearning4j.models.embeddings.loader.WordVectorSerializer; //导入依赖的package包/类
@Ignore
@Test
public void testGoogleModelForInference() throws Exception {
WordVectors googleVectors = WordVectorSerializer.loadGoogleModelNonNormalized(
new File("/ext/GoogleNews-vectors-negative300.bin.gz"), true, false);
TokenizerFactory t = new DefaultTokenizerFactory();
t.setTokenPreProcessor(new CommonPreprocessor());
ParagraphVectors pv =
new ParagraphVectors.Builder().tokenizerFactory(t).iterations(10).useHierarchicSoftmax(false)
.trainWordVectors(false).iterations(10).useExistingWordVectors(googleVectors)
.negativeSample(10).sequenceLearningAlgorithm(new DM<VocabWord>()).build();
INDArray vec1 = pv.inferVector("This text is pretty awesome");
INDArray vec2 = pv.inferVector("Fantastic process of crazy things happening inside just for history purposes");
log.info("vec1/vec2: {}", Transforms.cosineSim(vec1, vec2));
}
示例15: testGlove
import org.deeplearning4j.models.embeddings.loader.WordVectorSerializer; //导入依赖的package包/类
@Test
public void testGlove() throws Exception {
Glove glove = new Glove(true, 5, 100);
JavaRDD<String> corpus = sc.textFile(new ClassPathResource("raw_sentences.txt").getFile().getAbsolutePath())
.map(new Function<String, String>() {
@Override
public String call(String s) throws Exception {
return s.toLowerCase();
}
});
Pair<VocabCache<VocabWord>, GloveWeightLookupTable> table = glove.train(corpus);
WordVectors vectors = WordVectorSerializer
.fromPair(new Pair<>((InMemoryLookupTable) table.getSecond(), (VocabCache) table.getFirst()));
Collection<String> words = vectors.wordsNearest("day", 20);
assertTrue(words.contains("week"));
}