本文整理汇总了Java中org.deeplearning4j.models.embeddings.learning.impl.elements.SkipGram类的典型用法代码示例。如果您正苦于以下问题:Java SkipGram类的具体用法?Java SkipGram怎么用?Java SkipGram使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
SkipGram类属于org.deeplearning4j.models.embeddings.learning.impl.elements包,在下文中一共展示了SkipGram类的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: w2vBuilder
import org.deeplearning4j.models.embeddings.learning.impl.elements.SkipGram; //导入依赖的package包/类
public static Word2Vec w2vBuilder(SentenceIterator iter, TokenizerFactory t) {
return new Word2Vec.Builder()
.seed(12345)
.iterate(iter)
.tokenizerFactory(t)
.batchSize(1000)
.allowParallelTokenization(true) // enable parallel tokenization
.epochs(1) // number of epochs (iterations over whole training corpus) for training
.iterations(3) // number of iterations done for each mini-batch during training
.elementsLearningAlgorithm(new SkipGram<>()) // use SkipGram Model. If CBOW: new CBOW<>()
.minWordFrequency(50) // discard words that appear less than the times of set value
.windowSize(5) // set max skip length between words
.learningRate(0.05) // the starting learning rate
.minLearningRate(5e-4) // learning rate should not lower than the set threshold value
.negativeSample(10) // number of negative examples
// set threshold for occurrence of words. Those that appear with higher frequency will be
// randomly down-sampled
.sampling(1e-5)
.useHierarchicSoftmax(true) // use hierarchical softmax
.layerSize(300) // size of word vectors
.workers(8) // number of threads
.build();
}
示例2: shouldLoadAndCreateSameWord2Vec
import org.deeplearning4j.models.embeddings.learning.impl.elements.SkipGram; //导入依赖的package包/类
@Test
public void shouldLoadAndCreateSameWord2Vec() {
//given
Pan15Parser parser = new Pan15Parser();
HashMap<String, Pan15Author> english = parser.parseCSVCorpus().get(Language.ENGLISH);
TokenizerFactory t = new DefaultTokenizerFactory();
t.setTokenPreProcessor(new CommonPreprocessor());
List<String> englishSentences = english.values().stream().map(Author::getDocuments)
.collect(Collectors.toList())
.stream().flatMap(List::stream).collect(Collectors.toList());
SentenceIterator englishIter = new CollectionSentenceIterator(new Pan15SentencePreProcessor(), englishSentences);
// when
Word2Vec englishVec = new Word2Vec.Builder()
.minWordFrequency(6)
.iterations(15)
.layerSize(250)
.seed(42)
.windowSize(5)
.iterate(englishIter)
.tokenizerFactory(t)
.build();
englishVec.fit();
Word2Vec loadedEnglishVec1 = new Pan15Word2Vec(new SkipGram<>()).readModelFromFile(Language.ENGLISH);
Word2Vec loadedEnglishVec2 = new Pan15Word2Vec(new CBOW<>()).readModelFromFile(Language.ENGLISH);
Word2Vec loadedEnglishVec3 = new Pan15Word2Vec(new GloVe<>()).readModelFromFile(Language.ENGLISH);
loadedEnglishVec1.setTokenizerFactory(t);
loadedEnglishVec1.setSentenceIterator(englishIter);
loadedEnglishVec2.setTokenizerFactory(t);
loadedEnglishVec2.setSentenceIterator(englishIter);
loadedEnglishVec3.setTokenizerFactory(t);
loadedEnglishVec3.setSentenceIterator(englishIter);
//then
Assert.assertNotNull(loadedEnglishVec1);
System.out.println(englishVec.wordsNearest("home", 15));
System.out.println(loadedEnglishVec1.wordsNearest("home", 15));
System.out.println(loadedEnglishVec2.wordsNearest("home", 15));
System.out.println(loadedEnglishVec3.wordsNearest("home", 15));
}
示例3: testRunWord2Vec
import org.deeplearning4j.models.embeddings.learning.impl.elements.SkipGram; //导入依赖的package包/类
@Test
public void testRunWord2Vec() throws Exception {
// Strip white space before and after for each line
SentenceIterator iter = new BasicLineIterator(inputFile.getAbsolutePath());
// Split on white spaces in the line to get words
TokenizerFactory t = new DefaultTokenizerFactory();
t.setTokenPreProcessor(new CommonPreprocessor());
Word2Vec vec = new Word2Vec.Builder().minWordFrequency(1).iterations(3).batchSize(64).layerSize(100)
.stopWords(new ArrayList<String>()).seed(42).learningRate(0.025).minLearningRate(0.001)
.sampling(0).elementsLearningAlgorithm(new SkipGram<VocabWord>())
//.negativeSample(10)
.epochs(1).windowSize(5).allowParallelTokenization(true)
.modelUtils(new BasicModelUtils<VocabWord>()).iterate(iter).tokenizerFactory(t).build();
assertEquals(new ArrayList<String>(), vec.getStopWords());
vec.fit();
File tempFile = File.createTempFile("temp", "temp");
tempFile.deleteOnExit();
WordVectorSerializer.writeFullModel(vec, tempFile.getAbsolutePath());
Collection<String> lst = vec.wordsNearest("day", 10);
//log.info(Arrays.toString(lst.toArray()));
printWords("day", lst, vec);
assertEquals(10, lst.size());
double sim = vec.similarity("day", "night");
log.info("Day/night similarity: " + sim);
assertTrue(sim < 1.0);
assertTrue(sim > 0.4);
assertTrue(lst.contains("week"));
assertTrue(lst.contains("night"));
assertTrue(lst.contains("year"));
assertFalse(lst.contains(null));
lst = vec.wordsNearest("day", 10);
//log.info(Arrays.toString(lst.toArray()));
printWords("day", lst, vec);
assertTrue(lst.contains("week"));
assertTrue(lst.contains("night"));
assertTrue(lst.contains("year"));
new File("cache.ser").delete();
ArrayList<String> labels = new ArrayList<>();
labels.add("day");
labels.add("night");
labels.add("week");
INDArray matrix = vec.getWordVectors(labels);
assertEquals(matrix.getRow(0), vec.getWordVectorMatrix("day"));
assertEquals(matrix.getRow(1), vec.getWordVectorMatrix("night"));
assertEquals(matrix.getRow(2), vec.getWordVectorMatrix("week"));
WordVectorSerializer.writeWordVectors(vec, pathToWriteto);
}
示例4: testW2VnegativeOnRestore
import org.deeplearning4j.models.embeddings.learning.impl.elements.SkipGram; //导入依赖的package包/类
@Test
public void testW2VnegativeOnRestore() throws Exception {
// Strip white space before and after for each line
SentenceIterator iter = new BasicLineIterator(inputFile.getAbsolutePath());
// Split on white spaces in the line to get words
TokenizerFactory t = new DefaultTokenizerFactory();
t.setTokenPreProcessor(new CommonPreprocessor());
Word2Vec vec = new Word2Vec.Builder().minWordFrequency(1).iterations(3).batchSize(64).layerSize(100)
.stopWords(new ArrayList<String>()).seed(42).learningRate(0.025).minLearningRate(0.001)
.sampling(0).elementsLearningAlgorithm(new SkipGram<VocabWord>()).negativeSample(10).epochs(1)
.windowSize(5).useHierarchicSoftmax(false).allowParallelTokenization(true)
.modelUtils(new FlatModelUtils<VocabWord>()).iterate(iter).tokenizerFactory(t).build();
assertEquals(false, vec.getConfiguration().isUseHierarchicSoftmax());
log.info("Fit 1");
vec.fit();
File tmpFile = File.createTempFile("temp", "file");
tmpFile.deleteOnExit();
WordVectorSerializer.writeWord2VecModel(vec, tmpFile);
iter.reset();
Word2Vec restoredVec = WordVectorSerializer.readWord2VecModel(tmpFile, true);
restoredVec.setTokenizerFactory(t);
restoredVec.setSentenceIterator(iter);
assertEquals(false, restoredVec.getConfiguration().isUseHierarchicSoftmax());
assertTrue(restoredVec.getModelUtils() instanceof FlatModelUtils);
assertTrue(restoredVec.getConfiguration().isAllowParallelTokenization());
log.info("Fit 2");
restoredVec.fit();
iter.reset();
restoredVec = WordVectorSerializer.readWord2VecModel(tmpFile, false);
restoredVec.setTokenizerFactory(t);
restoredVec.setSentenceIterator(iter);
assertEquals(false, restoredVec.getConfiguration().isUseHierarchicSoftmax());
assertTrue(restoredVec.getModelUtils() instanceof BasicModelUtils);
log.info("Fit 3");
restoredVec.fit();
}
示例5: testDirectInference
import org.deeplearning4j.models.embeddings.learning.impl.elements.SkipGram; //导入依赖的package包/类
@Test
public void testDirectInference() throws Exception {
ClassPathResource resource_sentences = new ClassPathResource("/big/raw_sentences.txt");
ClassPathResource resource_mixed = new ClassPathResource("/paravec");
SentenceIterator iter = new AggregatingSentenceIterator.Builder()
.addSentenceIterator(new BasicLineIterator(resource_sentences.getFile()))
.addSentenceIterator(new FileSentenceIterator(resource_mixed.getFile())).build();
TokenizerFactory t = new DefaultTokenizerFactory();
t.setTokenPreProcessor(new CommonPreprocessor());
Word2Vec wordVectors = new Word2Vec.Builder().minWordFrequency(1).batchSize(250).iterations(1).epochs(3)
.learningRate(0.025).layerSize(150).minLearningRate(0.001)
.elementsLearningAlgorithm(new SkipGram<VocabWord>()).useHierarchicSoftmax(true).windowSize(5)
.iterate(iter).tokenizerFactory(t).build();
wordVectors.fit();
ParagraphVectors pv = new ParagraphVectors.Builder().tokenizerFactory(t).iterations(10)
.useHierarchicSoftmax(true).trainWordVectors(true).useExistingWordVectors(wordVectors)
.negativeSample(0).sequenceLearningAlgorithm(new DM<VocabWord>()).build();
INDArray vec1 = pv.inferVector("This text is pretty awesome");
INDArray vec2 = pv.inferVector("Fantastic process of crazy things happening inside just for history purposes");
log.info("vec1/vec2: {}", Transforms.cosineSim(vec1, vec2));
}
示例6: readModelFromFile
import org.deeplearning4j.models.embeddings.learning.impl.elements.SkipGram; //导入依赖的package包/类
public Word2Vec readModelFromFile(Language language) {
String path = (learningAlgorithm instanceof SkipGram) ?
language.getName() + "_model.txt" : language.getName() + "_model_" + learningAlgorithm.getCodeName() + ".txt";
URL resource = Pan15Word2Vec.class.getClassLoader()
.getResource("word2vec/" + path);
try {
return WordVectorSerializer.readWord2VecModel(Paths.get(resource.toURI()).toFile());
} catch (URISyntaxException e) {
e.printStackTrace();
}
return null;
}
示例7: saveModel
import org.deeplearning4j.models.embeddings.learning.impl.elements.SkipGram; //导入依赖的package包/类
public void saveModel(Word2Vec model, Language language) {
String dir = "./src/main/resources/word2vec";
String path = (learningAlgorithm instanceof SkipGram) ?
dir + "/" + language.getName() + "_model.txt"
:dir + "/" + language.getName() + "_model_" + learningAlgorithm.getCodeName() + ".txt";
WordVectorSerializer.writeWord2VecModel(model, path);
}