本文整理汇总了Java中org.cirdles.mcLeanRegression.core.McLeanRegressionLineInterface类的典型用法代码示例。如果您正苦于以下问题:Java McLeanRegressionLineInterface类的具体用法?Java McLeanRegressionLineInterface怎么用?Java McLeanRegressionLineInterface使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
McLeanRegressionLineInterface类属于org.cirdles.mcLeanRegression.core包,在下文中一共展示了McLeanRegressionLineInterface类的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: fitLineToDataFor2D
import org.cirdles.mcLeanRegression.core.McLeanRegressionLineInterface; //导入依赖的package包/类
@Override
public McLeanRegressionLineInterface fitLineToDataFor2D(double[] x, double[] y, double[] x1SigmaAbs, double[] y1SigmaAbs, double[] rhos) {
int rowCount = x.length;
Matrix data = new Matrix(rowCount, 2);
data.setMatrix(0, rowCount - 1, 0, 0, new Matrix(x, rowCount));
data.setMatrix(0, rowCount - 1, 1, 1, new Matrix(y, rowCount));
Matrix unct = new Matrix(rowCount, 3);
unct.setMatrix(0, rowCount - 1, 0, 0, new Matrix(x1SigmaAbs, rowCount));
unct.setMatrix(0, rowCount - 1, 1, 1, new Matrix(y1SigmaAbs, rowCount));
unct.setMatrix(0, rowCount - 1, 2, 2, new Matrix(rhos, rowCount));
McLeanRegressionLineFitEngineInterface mcLeanRegressionLineFitEngine = new McLeanRegressionLineFitEngine(data, unct);
McLeanRegressionLineInterface fitLine = mcLeanRegressionLineFitEngine.fitLine();
return fitLine;
}
示例2: fitLineToDataFor2D
import org.cirdles.mcLeanRegression.core.McLeanRegressionLineInterface; //导入依赖的package包/类
public McLeanRegressionLineInterface fitLineToDataFor2D(String x, String y, String x1SigmaAbs, String y1SigmaAbs, String rhos) {
double[] xDouble = toDouble(x);
double[] yDouble = toDouble(y);
double[] x1SigmaAbsDouble = toDouble(x1SigmaAbs);
double[] y1SigmaAbsDouble = toDouble(y1SigmaAbs);
double[] rhosDouble = toDouble(rhos);
double[][] xy = new double[x.length()][2];
for(int i = 0; i < xDouble.length; i++) {
xy[i][0] = xDouble[i];
xy[i][1] = yDouble[i];
}
try {
mcLeanRegressionLine = mcLeanRegression.fitLineToDataFor2D(xDouble, yDouble, x1SigmaAbsDouble, y1SigmaAbsDouble, rhosDouble);
} catch (Exception e) {
// in the case that an uncertainty is not provided, the try block fails and we do an ordinary least squares (OLS)
SimpleRegression regression = new SimpleRegression();
regression.addData(xy);
mcLeanRegressionLine = new McLeanOrdinaryLeastSquaresRegressionLine(regression);
}
return mcLeanRegressionLine;
}
示例3: fitLineToDataFor2or3or4or5DFromCSV
import org.cirdles.mcLeanRegression.core.McLeanRegressionLineInterface; //导入依赖的package包/类
/**
*
* @param myDataFilePath
* @return McLeanRegressionLineInterface fitLine
* @throws IOException
*/
@Override
public McLeanRegressionLineInterface fitLineToDataFor2or3or4or5DFromCSV(String myDataFilePath)
throws IOException {
String dataFilePath = myDataFilePath;
DataFileHandlerInterface dataPrep = new DataFileHandler();
McLeanRegressionLineFitEngineInterface mcLeanRegressionLineFitEngine = dataPrep.extractDataAndUnctMatricesFromCsvFile(dataFilePath);
McLeanRegressionLineInterface fitLine = mcLeanRegressionLineFitEngine.fitLine();
return fitLine;
}
示例4: producePlots
import org.cirdles.mcLeanRegression.core.McLeanRegressionLineInterface; //导入依赖的package包/类
/**
* Plots the first variable ("x") against each of the remaining dimension variables.
* @param lineFitEngine
* @param lineFitParameters
* @throws IOException
*/
public void producePlots(
McLeanRegressionLineFitEngineInterface lineFitEngine, McLeanRegressionLineInterface lineFitParameters)
throws IOException {
int dimCount = lineFitParameters.getA().length;
Matrix x = lineFitEngine.getData().getMatrix(0, lineFitParameters.getN() - 1, 0, 0);
Matrix xUnct = lineFitEngine.getUnct().getMatrix(0, lineFitParameters.getN() - 1, 0, 0);
TopsoilPlotter [] plots = new TopsoilPlotter[dimCount - 1];
for (int dim = 1; dim < dimCount; dim++) {
Matrix y = lineFitEngine.getData().getMatrix(0, lineFitParameters.getN() - 1, dim, dim);
Matrix yUnct = lineFitEngine.getUnct().getMatrix(0, lineFitParameters.getN() - 1, dim, dim);
Matrix rho = lineFitEngine.getUnct().getMatrix(0, lineFitParameters.getN() - 1, dimCount + dim - 1, dimCount + dim - 1);
Matrix data = new Matrix(lineFitParameters.getN(), 2);
Matrix unct = new Matrix(lineFitParameters.getN(), 3);
data.setMatrix(0, lineFitParameters.getN() - 1, 0, 0, x);
data.setMatrix(0, lineFitParameters.getN() - 1, 1, 1, y);
unct.setMatrix(0, lineFitParameters.getN() - 1, 0, 0, xUnct);
unct.setMatrix(0, lineFitParameters.getN() - 1, 1, 1, yUnct);
unct.setMatrix(0, lineFitParameters.getN() - 1, 2, 2, rho);
plots[dim] = new TopsoilPlotter(data.getArrayCopy(), unct.getArrayCopy());
}
}
示例5: writeReportsFromDataFile
import org.cirdles.mcLeanRegression.core.McLeanRegressionLineInterface; //导入依赖的package包/类
public void writeReportsFromDataFile(String dataFileLocation)
throws IOException {
McLeanRegressionLineFitEngineInterface lineFitEngine = extractDataAndUnctMatricesFromCsvFile(dataFileLocation);
McLeanRegressionLineInterface lineFitParameters = lineFitEngine.fitLine();
reportsEngine.produceReports(lineFitParameters);
//reportsEngine.producePlots(lineFitEngine, lineFitParameters);
}
示例6: fitLineToDataFor2or3or4or5DFromCSV
import org.cirdles.mcLeanRegression.core.McLeanRegressionLineInterface; //导入依赖的package包/类
public McLeanRegressionLineInterface fitLineToDataFor2or3or4or5DFromCSV(String myDataFilePath)
throws IOException;
示例7: getMcLeanRegressionLine
import org.cirdles.mcLeanRegression.core.McLeanRegressionLineInterface; //导入依赖的package包/类
/**
* @return the mcLeanRegressionLine
*/
public McLeanRegressionLineInterface getMcLeanRegressionLine() {
return mcLeanRegressionLine;
}
示例8: setMcLeanRegressionLine
import org.cirdles.mcLeanRegression.core.McLeanRegressionLineInterface; //导入依赖的package包/类
/**
* @param mcLeanRegressionLine the mcLeanRegressionLine to set
*/
public void setMcLeanRegressionLine(McLeanRegressionLineInterface mcLeanRegressionLine) {
this.mcLeanRegressionLine = mcLeanRegressionLine;
}
示例9: fitLineToDataFor2D
import org.cirdles.mcLeanRegression.core.McLeanRegressionLineInterface; //导入依赖的package包/类
public McLeanRegressionLineInterface fitLineToDataFor2D(double[] x, double[] y, double[] x1SigmaAbs, double[] y1SigmaAbs, double[] rhos) ;