当前位置: 首页>>代码示例>>Java>>正文


Java JavaPairReceiverInputDStream类代码示例

本文整理汇总了Java中org.apache.spark.streaming.api.java.JavaPairReceiverInputDStream的典型用法代码示例。如果您正苦于以下问题:Java JavaPairReceiverInputDStream类的具体用法?Java JavaPairReceiverInputDStream怎么用?Java JavaPairReceiverInputDStream使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


JavaPairReceiverInputDStream类属于org.apache.spark.streaming.api.java包,在下文中一共展示了JavaPairReceiverInputDStream类的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: main

import org.apache.spark.streaming.api.java.JavaPairReceiverInputDStream; //导入依赖的package包/类
public static void main(String[] args) {
    if (args.length < 4) {
        System.err.println("Usage: JavaKafkaWordCount <zkQuorum> <group> <topics> <numThreads>");
        System.exit(1);
    }

    SparkConf sparkConf = new SparkConf().setAppName("JavaKafkaWordCount");
    // Create the context with a 1 second batch size
    JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, new Duration(2000));
    int numThreads = Integer.parseInt(args[3]);
    Map<String, Integer> topicMap = new HashMap<String, Integer>();
    String[] topics = args[2].split(",");
    for (String topic : topics) {
        topicMap.put(topic, numThreads);
    }
    JavaPairReceiverInputDStream<String, String> messages = KafkaUtils.createStream(jssc, args[0], args[1],
            topicMap);
    JavaDStream<String> lines = messages.map(tuple2 -> tuple2._2());
    JavaDStream<String> words = lines.flatMap(x -> Lists.newArrayList(SPACE.split(x)));
    JavaPairDStream<String, Integer> wordCounts = words.mapToPair(s -> new Tuple2<String, Integer>(s, 1)).reduceByKey(
            (i1, i2) -> i1 + i2);
    wordCounts.print();
    jssc.start();
    jssc.awaitTermination();
}
 
开发者ID:ogidogi,项目名称:laughing-octo-sansa,代码行数:26,代码来源:TestSparkKafkaReceiverApproach.java

示例2: main

import org.apache.spark.streaming.api.java.JavaPairReceiverInputDStream; //导入依赖的package包/类
public static void main(String[] args) throws InterruptedException {
  SparkConf sc = new SparkConf().setAppName("POC-Kafka");
  
  try(JavaStreamingContext jsc = new JavaStreamingContext(sc, new Duration(2000))) {
    
    JavaPairReceiverInputDStream<String, String> stream = KafkaUtils.createStream(
        jsc, ZK_HOST_PORT, "a_group_id", Collections.singletonMap(EXAMPLE_TOPIC, 1));

    JavaDStream<ExampleXML> records = stream.map(t -> t._2()).map(new ParseXML());
    records.foreachRDD(rdd -> System.out.printf("Amount of XMLs: %d\n", rdd.count()));

    jsc.start();
    jsc.awaitTermination();
  }
}
 
开发者ID:ciandt-dev,项目名称:gcp,代码行数:16,代码来源:Spark3Kafka.java

示例3: main

import org.apache.spark.streaming.api.java.JavaPairReceiverInputDStream; //导入依赖的package包/类
public static void main(String[] args) {
Logger.getLogger("org").setLevel(Level.WARN);
Logger.getLogger("akka").setLevel(Level.WARN);

SparkConf sparkConf = new SparkConf().setMaster("spark://10.204.100.206:7077").setAppName("StreamingKafka101");
sparkConf.setJars(new String[] { "target\\TestProjects-1.0-SNAPSHOT.jar" });
	
//sparkConf.setExecutorEnv("executor-memory", "8G");
//sparkConf.setExecutorEnv("spark.executor.memory", "8G");
sparkConf.set("spark.executor.memory", "4G");
//sparkConf.set("executor-memory", "8G");
		
int duration = 2;
if(args.length > 0){
 try{
  duration = Integer.parseInt(args[0]);
  System.out.println("duration changed to " + duration);
 }catch(Exception e){
  System.out.println("Duration reset to defaults");
 }
}

JavaStreamingContext ssc = new JavaStreamingContext(sparkConf, Durations.seconds(duration));
	
  
Map<String, Integer> topicMap = new HashMap<String, Integer>();
topicMap.put("loadtest", 4);
JavaPairReceiverInputDStream<String, String> kafkaStream = KafkaUtils.createStream(ssc,"10.204.100.172:2182","kafka-group1",topicMap);
  
JavaDStream<String> lines = kafkaStream.map(new Function<Tuple2<String, String>, String>() {
    @Override
    public String call(Tuple2<String, String> tuple2) {
      return tuple2._2();
    }
});
  
lines.foreachRDD(new Function<JavaRDD<String>, Void>() {
 @Override
 public Void call(JavaRDD<String> rdd) throws Exception {
  System.out.println(new Date() + "  Total records read: " + rdd.count() );
  return null;
 }
});
  	
ssc.start();
ssc.awaitTermination();
}
 
开发者ID:atulsm,项目名称:Test_Projects,代码行数:48,代码来源:StreamingKafka101.java

示例4: main

import org.apache.spark.streaming.api.java.JavaPairReceiverInputDStream; //导入依赖的package包/类
@SuppressWarnings("serial")
public static void main(String[] args) throws InterruptedException {
//    if (args.length < 4) {
//      System.err.println("Usage: JavaKafkaWordCount <zkQuorum> <group> <topics> <numThreads>");
//      System.exit(1);
//    }
	  args = new String[4];
    args[0]="localhost:2181";
    args[1]= "1";
    args[2]= "test";
    args[3]= "1";

    SparkConf sparkConf = new SparkConf().setAppName("JavaKafkaWordCount").setMaster("spark://Impetus-NL163U:7077");
    // Create the context with a 1 second batch size
    JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, new Duration(20000));

    int numThreads = Integer.parseInt(args[3]);
    Map<String, Integer> topicMap = new HashMap<String, Integer>();
    String[] topics = args[2].split(",");
    for (String topic: topics) {
      topicMap.put(topic, numThreads);
    }

    JavaPairReceiverInputDStream<String, String> messages =
            KafkaUtils.createStream(jssc, args[0], args[1], topicMap);

    final JavaDStream<String> lines = messages.map(new Function<Tuple2<String,String>, String>() {
		@Override
		public String call(Tuple2<String, String> v1) throws Exception {
			ObjectMapper objectMapper = new ObjectMapper();
			objectMapper.configure(Feature.USE_ANNOTATIONS, false);
			Map<String,String> mapValue = objectMapper.readValue(v1._2(), new TypeReference<Map<String,String>>() {
			});
			Collection<String> values = mapValue.values();
			String finalString = "";
			for (Iterator<String> iterator = values.iterator(); iterator.hasNext();) {
				String value = iterator.next();
				if(finalString.length()==0){
					finalString = finalString +value;
				}else {
				finalString = finalString+","+ value;
				}
			}
			return finalString;
		}
	});
    
    lines.print();
    new Thread(){
    	public void run() {
    		while(true){
    			try {
					Thread.sleep(1000);
				} catch (InterruptedException e) {
					// TODO Auto-generated catch block
					e.printStackTrace();
				}
    			System.out.println("#############################################################################"+lines.count());
    		}
    	};
    }.start();
    
    jssc.start();
    jssc.awaitTermination();
  }
 
开发者ID:PacktPublishing,项目名称:Practical-Real-time-Processing-and-Analytics,代码行数:66,代码来源:JavaKafkaWordCount.java

示例5: main

import org.apache.spark.streaming.api.java.JavaPairReceiverInputDStream; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
    String zkQuorum = "localhost:2181";
    String groupName = "stream";
    int numThreads = 3;
    String topicsName = "test1";
    SparkConf sparkConf = new SparkConf().setAppName("WordCountKafkaStream");

    JavaStreamingContext javaStreamingContext = new JavaStreamingContext(sparkConf, new Duration(5000));

    Map<String, Integer> topicToBeUsedBySpark = new HashMap<>();
    String[] topics = topicsName.split(",");
    for (String topic : topics) {
        topicToBeUsedBySpark.put(topic, numThreads);
    }

    JavaPairReceiverInputDStream<String, String> streamMessages =
            KafkaUtils.createStream(javaStreamingContext, zkQuorum, groupName, topicToBeUsedBySpark);

    JavaDStream<String> lines = streamMessages.map(new Function<Tuple2<String, String>, String>() {
        @Override
        public String call(Tuple2<String, String> tuple2) {
            return tuple2._2();
        }
    });

    JavaDStream<String> words = lines.flatMap(new FlatMapFunction<String, String>() {
        @Override
        public Iterator<String> call(String x) {
            return Arrays.asList(WORD_DELIMETER.split(x)).iterator();
        }
    });

    JavaPairDStream<String, Integer> wordCounts = words.mapToPair(
            new PairFunction<String, String, Integer>() {
                @Override
                public Tuple2<String, Integer> call(String s) {
                    return new Tuple2<>(s, 1);
                }
            }).reduceByKey(new Function2<Integer, Integer, Integer>() {
        @Override
        public Integer call(Integer i1, Integer i2) {
            return i1 + i2;
        }
    });

    wordCounts.print();
    javaStreamingContext.start();
    javaStreamingContext.awaitTermination();
}
 
开发者ID:PacktPublishing,项目名称:Building-Data-Streaming-Applications-with-Apache-Kafka,代码行数:50,代码来源:KafkaReceiverWordCountJava.java

示例6: main

import org.apache.spark.streaming.api.java.JavaPairReceiverInputDStream; //导入依赖的package包/类
public static void main(String[] args) {
    if (args.length < 4) {
        System.err.println("Usage: StreamingAvg <zkQuorum> <group> <topics> <numThreads>");
        System.exit(1);
    }

    //Configure the Streaming Context
    SparkConf sparkConf = new SparkConf().setAppName("StreamingAvg");

    JavaStreamingContext ssc = new JavaStreamingContext(sparkConf, new Duration(10000));

    int numThreads = Integer.parseInt(args[3]);
    Map<String, Integer> topicMap = new HashMap<String, Integer>();
    String[] topics = args[2].split(",");
    for (String topic: topics) {
        topicMap.put(topic, numThreads);
    }

    JavaPairReceiverInputDStream<String, String> messages =
            KafkaUtils.createStream(ssc, args[0], args[1], topicMap);


    System.out.println("Got my DStream! connecting to zookeeper "+ args[0] + " group " + args[1] + " topics" +
    topicMap);



    JavaPairDStream<Integer,Integer> nums = messages.mapToPair(new PairFunction<Tuple2<String,String>, Integer, Integer>()
    {
        @Override
        public Tuple2<Integer,Integer> call(Tuple2<String, String> tuple2) {
            return new Tuple2<Integer,Integer>(1,Integer.parseInt(tuple2._2()));
        }
    });

    JavaDStream<Tuple2<Integer,Integer>> countAndSum = nums.reduce(new Function2<Tuple2<Integer,Integer>, Tuple2<Integer,Integer>, Tuple2<Integer,Integer>>() {
        @Override
        public Tuple2<Integer, Integer> call(Tuple2<Integer, Integer> a, Tuple2<Integer, Integer> b) {
            return new Tuple2<Integer, Integer>(a._1() + b._1(), a._2() + b._2());
        }
    });

    countAndSum.foreachRDD(new Function<JavaRDD<Tuple2<Integer, Integer>>, Void>() {
        @Override
        public Void call(JavaRDD<Tuple2<Integer, Integer>> tuple2JavaRDD) throws Exception {
            if (tuple2JavaRDD.count() > 0) {
                System.out.println("Current avg: " + tuple2JavaRDD.first()._2() / tuple2JavaRDD.first()._1());
            } else {
                System.out.println("Got no data in this window");
            }
            return null;
        }
    });

    ssc.start();
    ssc.awaitTermination();

}
 
开发者ID:gwenshap,项目名称:kafka-examples,代码行数:59,代码来源:StreamingAvg.java

示例7: handleRequest

import org.apache.spark.streaming.api.java.JavaPairReceiverInputDStream; //导入依赖的package包/类
@Override
protected void handleRequest(RestRequest request, RestChannel channel, Client client)
		throws Exception {
	final String topic = request.param("topic", "");
	final boolean schema = request.paramAsBoolean("schema", false);
	final String master = request.param("masterAddress", "local");
	final String hdfs =  request.param("hdfs", "hdfs://localhost:50070");
	final String memory =  request.param("memory", "2g");
	final String appName = request.param("appName", "appName-"+topic);
	final int duration = request.paramAsInt("duration", 1000);
	
	Thread exec = new Thread(new Runnable(){

		@Override
		public void run() {
		
			SparkConf sparkConf = new SparkConf().setAppName(appName).setMaster(master).set("spark.executor.memory", memory);
			JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, new Duration(duration));
			
			Map<String, Integer> topicMap = new HashMap<String, Integer>();
			topicMap.put(topic, 3);
			
			JavaPairReceiverInputDStream<String, byte[]> kafkaStream = KafkaUtils.createStream(jssc, String.class, byte[].class, 
						kafka.serializer.DefaultDecoder.class, kafka.serializer.DefaultDecoder.class, null, 
						topicMap,  StorageLevel.MEMORY_ONLY());
	
			//JobConf confHadoop = new JobConf();
			//confHadoop.set("mapred.output.compress", "true");
			//confHadoop.set("mapred.output.compression.codec", "com.hadoop.compression.lzo.LzopCodec");
	
			kafkaStream.saveAsHadoopFiles(hdfs, "seq", Text.class, BytesWritable.class, KafkaStreamSeqOutputFormat.class);
			
			topicContextMap.put(topic, jssc);
			jssc.start();		
			jssc.awaitTermination();
			
		}
	});
	
	exec.start();
	
	channel.sendResponse(new BytesRestResponse(RestStatus.OK, String.format("{\"topic\":\"%s\"}",  topic)));
	
	
}
 
开发者ID:huangchen007,项目名称:elasticsearch-rest-command,代码行数:46,代码来源:KafkaStreamRestHandler.java


注:本文中的org.apache.spark.streaming.api.java.JavaPairReceiverInputDStream类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。