当前位置: 首页>>代码示例>>Java>>正文


Java Durations类代码示例

本文整理汇总了Java中org.apache.spark.streaming.Durations的典型用法代码示例。如果您正苦于以下问题:Java Durations类的具体用法?Java Durations怎么用?Java Durations使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


Durations类属于org.apache.spark.streaming包,在下文中一共展示了Durations类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: run

import org.apache.spark.streaming.Durations; //导入依赖的package包/类
private void run(CompositeConfiguration conf) {
    // Spark conf
    SparkConf sparkConf = new SparkConf().setAppName("TwitterSparkCrawler").setMaster(conf.getString("spark.master"))
            .set("spark.serializer", conf.getString("spark.serializer"));
    JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, Durations.seconds(conf.getLong("stream.duration")));

    // Twitter4J
    // IMPORTANT: put keys in twitter4J.properties
    Configuration twitterConf = ConfigurationContext.getInstance();
    Authorization twitterAuth = AuthorizationFactory.getInstance(twitterConf);

    // Create twitter stream
    String[] filters = { "#Car" };
    TwitterUtils.createStream(jssc, twitterAuth, filters).print();
    // Start the computation
    jssc.start();
    jssc.awaitTermination();
}
 
开发者ID:ogidogi,项目名称:laughing-octo-sansa,代码行数:19,代码来源:TwitterSparkCrawler.java

示例2: main

import org.apache.spark.streaming.Durations; //导入依赖的package包/类
public static void main(String[] args) 
{
 SparkConf conf = new SparkConf();
 conf.setAppName("Wordcount Background");
 conf.setMaster("local");
  
 
 JavaStreamingContext ssc = new JavaStreamingContext(conf, Durations.seconds(15));
 
 
 JavaDStream<String> lines = ssc.textFileStream("/home/rahul/DATASET");
 JavaDStream<String> words = lines.flatMap(WORDS_EXTRACTOR);
 JavaPairDStream<String, Integer> pairs = words.mapToPair(WORDS_MAPPER);
 JavaPairDStream<String, Integer> counter = pairs.reduceByKey(WORDS_REDUCER);
 
 counter.print();
 
 ssc.start();
 
 ssc.awaitTermination();
 

 /*JavaRDD<String> file = context.textFile("/home/rahul/Desktop/palestine.txt");
 JavaRDD<String> words = file.flatMap(WORDS_EXTRACTOR);
 JavaPairRDD<String, Integer> pairs = words.mapToPair(WORDS_MAPPER);
 JavaPairRDD<String, Integer> counter = pairs.reduceByKey(WORDS_REDUCER);
 counter.saveAsTextFile("/home/rahul/Desktop/wc"); 
 context.close();*/
}
 
开发者ID:arks-api,项目名称:arks-api,代码行数:30,代码来源:WordCount.java

示例3: processWindowTrafficData

import org.apache.spark.streaming.Durations; //导入依赖的package包/类
/**
 * Method to get window traffic counts of different type of vehicles for each route.
 * Window duration = 30 seconds and Slide interval = 10 seconds
 * 
 * @param filteredIotDataStream IoT data stream
 */
public void processWindowTrafficData(JavaDStream<IoTData> filteredIotDataStream) {

	// reduce by key and window (30 sec window and 10 sec slide).
	JavaPairDStream<AggregateKey, Long> countDStreamPair = filteredIotDataStream
			.mapToPair(iot -> new Tuple2<>(new AggregateKey(iot.getRouteId(), iot.getVehicleType()), 1L))
			.reduceByKeyAndWindow((a, b) -> a + b, Durations.seconds(30), Durations.seconds(10));

	// Transform to dstream of TrafficData
	JavaDStream<WindowTrafficData> trafficDStream = countDStreamPair.map(windowTrafficDataFunc);

	// Map Cassandra table column
	Map<String, String> columnNameMappings = new HashMap<String, String>();
	columnNameMappings.put("routeId", "routeid");
	columnNameMappings.put("vehicleType", "vehicletype");
	columnNameMappings.put("totalCount", "totalcount");
	columnNameMappings.put("timeStamp", "timestamp");
	columnNameMappings.put("recordDate", "recorddate");

	// call CassandraStreamingJavaUtil function to save in DB
	javaFunctions(trafficDStream).writerBuilder("traffickeyspace", "window_traffic",
			CassandraJavaUtil.mapToRow(WindowTrafficData.class, columnNameMappings)).saveToCassandra();
}
 
开发者ID:baghelamit,项目名称:iot-traffic-monitor,代码行数:29,代码来源:IoTTrafficDataProcessor.java

示例4: main

import org.apache.spark.streaming.Durations; //导入依赖的package包/类
public static void main(String[] args) throws InterruptedException {
    Map<String, Object> kafkaParams = new HashMap<>();
    kafkaParams.put("bootstrap.servers", "localhost:9092");
    kafkaParams.put("key.deserializer", StringDeserializer.class);
    kafkaParams.put("value.deserializer", StringDeserializer.class);
    kafkaParams.put("group.id", "use_a_separate_group_id_for_each_stream");
    kafkaParams.put("auto.offset.reset", "latest");
    kafkaParams.put("enable.auto.commit", false);

    Collection<String> topics = Arrays.asList("data-in");

    SparkConf sparkConf = new SparkConf().setAppName("JavaKafkaSpark");
    JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, Durations.seconds(5));

    final JavaInputDStream<ConsumerRecord<String, String>> stream =
            KafkaUtils.createDirectStream(
                    streamingContext,
                    LocationStrategies.PreferConsistent(),
                    ConsumerStrategies.<String, String>Subscribe(topics, kafkaParams)
            );

    JavaPairDStream<String, Integer>  countOfMessageKeys = stream
            .map((ConsumerRecord<String, String> record) -> record.key())
            .mapToPair((String s) -> new Tuple2<>(s, 1))
            .reduceByKey((Integer i1, Integer i2)-> i1 + i2);

    countOfMessageKeys.print();

    // Start the computation
    streamingContext.start();
    streamingContext.awaitTermination();
}
 
开发者ID:ebi-wp,项目名称:kafka-streams-api-websockets,代码行数:33,代码来源:SparkConsume.java

示例5: processMQTT

import org.apache.spark.streaming.Durations; //导入依赖的package包/类
/**
 * This will start the spark stream that is reading from the MQTT queue
 *
 * @param broker     - MQTT broker url
 * @param topic      - MQTT topic name
 * @param numSeconds - Number of seconds between batch size
 */
public void processMQTT(final String broker, final String topic, final int numSeconds) {

    LOG.info("************ SparkStreamingMQTTOutside.processMQTT start");

    // Create the spark application and set the name to MQTT
    SparkConf sparkConf = new SparkConf().setAppName("MQTT");

    // Create the spark streaming context with a 'numSeconds' second batch size
    jssc = new JavaStreamingContext(sparkConf, Durations.seconds(numSeconds));
    jssc.checkpoint(checkpointDirectory);

    LOG.info("************ SparkStreamingMQTTOutside.processMQTT about to read the MQTTUtils.createStream");
    //2. MQTTUtils to collect MQTT messages
    JavaReceiverInputDStream<String> messages = MQTTUtils.createStream(jssc, broker, topic);

    LOG.info("************ SparkStreamingMQTTOutside.processMQTT about to do foreachRDD");
    //process the messages on the queue and save them to the database
    messages.foreachRDD(new SaveRDD());

    LOG.info("************ SparkStreamingMQTTOutside.processMQTT prior to context.strt");
    // Start the context
    jssc.start();
    jssc.awaitTermination();
}
 
开发者ID:splicemachine,项目名称:splice-community-sample-code,代码行数:32,代码来源:SparkStreamingMQTT.java

示例6: start

import org.apache.spark.streaming.Durations; //导入依赖的package包/类
private void start() {
	// Create a local StreamingContext with two working thread and batch interval of
	// 1 second
	SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("NetworkWordCount");
	JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(5));

	JavaDStream<String> msgDataStream = jssc.textFileStream(StreamingUtils.getInputDirectory());
	msgDataStream.print();

	jssc.start();
	try {
		jssc.awaitTermination();
	} catch (InterruptedException e) {
		// TODO Auto-generated catch block
		e.printStackTrace();
	}
}
 
开发者ID:jgperrin,项目名称:net.jgp.labs.spark,代码行数:18,代码来源:StreamingIngestionFileSystemTextFileApp.java

示例7: start

import org.apache.spark.streaming.Durations; //导入依赖的package包/类
private void start() {
	// Create a local StreamingContext with two working thread and batch interval of
	// 1 second
	SparkConf conf = new SparkConf().setMaster("local[2]").setAppName("Streaming Ingestion File System Text File to Dataframe");
	JavaStreamingContext jssc = new JavaStreamingContext(conf, Durations.seconds(5));

	JavaDStream<String> msgDataStream = jssc.textFileStream(StreamingUtils.getInputDirectory());

	msgDataStream.print();
	// Create JavaRDD<Row>
	msgDataStream.foreachRDD(new RowProcessor());	

	jssc.start();
	try {
		jssc.awaitTermination();
	} catch (InterruptedException e) {
		// TODO Auto-generated catch block
		e.printStackTrace();
	}
}
 
开发者ID:jgperrin,项目名称:net.jgp.labs.spark,代码行数:21,代码来源:StreamingIngestionFileSystemTextFileToDataframeMultipleClassesApp.java

示例8: run

import org.apache.spark.streaming.Durations; //导入依赖的package包/类
private void run(CompositeConfiguration conf) {
    // Spark conf
    SparkConf sparkConf = new SparkConf().setAppName("TwitterSparkCrawler").setMaster(conf.getString("spark.master"))
            .set("spark.serializer", conf.getString("spark.serializer"))
            .registerKryoClasses(new Class<?>[] { Parameter.class, BatchRequestBuilder.class, BatchRequest.class });
    JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, Durations.seconds(conf.getLong("stream.duration")));

    // Create facebook stream
    Parameter typeParam = Parameter.with("type", "event");
    FacebookUtils
            .createStream(jssc, conf.getString("access.token"),
                    new BatchRequestBuilder[] {
                            new BatchRequestBuilder("search").parameters(new Parameter[] { Parameter.with("q", "car"), typeParam }) })
            .print();

    // Start the computation
    jssc.start();
    jssc.awaitTermination();
}
 
开发者ID:ogidogi,项目名称:laughing-octo-sansa,代码行数:20,代码来源:FacebookSparkCrawler.java

示例9: main

import org.apache.spark.streaming.Durations; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
  
      System.setProperty("hadoop.home.dir", "E:\\hadoop");
	
   SparkConf sparkConf = new SparkConf().setAppName("WordCountSocketEx").setMaster("local[*]");
   JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, Durations.seconds(1));
   Logger rootLogger = LogManager.getRootLogger();
 		rootLogger.setLevel(Level.WARN); 
   List<Tuple2<String, Integer>> tuples = Arrays.asList(new Tuple2<>("hello", 10), new Tuple2<>("world", 10));
   JavaPairRDD<String, Integer> initialRDD = streamingContext.sparkContext().parallelizePairs(tuples);
	    

   JavaReceiverInputDStream<String> StreamingLines = streamingContext.socketTextStream( "10.0.75.1", Integer.parseInt("9000"), StorageLevels.MEMORY_AND_DISK_SER);
   
   JavaDStream<String> words = StreamingLines.flatMap( str -> Arrays.asList(str.split(" ")).iterator() );
  
   JavaPairDStream<String, Integer> wordCounts = words.mapToPair(str-> new Tuple2<>(str, 1)).reduceByKey((count1,count2) ->count1+count2 );
  
   wordCounts.print();
   
JavaPairDStream<String, Integer> joinedDstream = wordCounts
		.transformToPair(new Function<JavaPairRDD<String, Integer>, JavaPairRDD<String, Integer>>() {
			@Override
			public JavaPairRDD<String, Integer> call(JavaPairRDD<String, Integer> rdd) throws Exception {
				JavaPairRDD<String, Integer> modRDD = rdd.join(initialRDD).mapToPair(
						new PairFunction<Tuple2<String, Tuple2<Integer, Integer>>, String, Integer>() {
							@Override
							public Tuple2<String, Integer> call(
									Tuple2<String, Tuple2<Integer, Integer>> joinedTuple) throws Exception {
								return new Tuple2<>(joinedTuple._1(),(joinedTuple._2()._1() + joinedTuple._2()._2()));
							}
						});
				return modRDD;
			}
		});

   joinedDstream.print();
   streamingContext.start();
   streamingContext.awaitTermination();
 }
 
开发者ID:PacktPublishing,项目名称:Apache-Spark-2x-for-Java-Developers,代码行数:41,代码来源:WordCountTransformOpEx.java

示例10: main

import org.apache.spark.streaming.Durations; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
 System.setProperty("hadoop.home.dir", "E:\\hadoop");

   SparkConf sparkConf = new SparkConf().setAppName("WordCountSocketEx").setMaster("local[*]");
   JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, Durations.seconds(1));
   streamingContext.checkpoint("E:\\hadoop\\checkpoint");
// Initial state RDD input to mapWithState
   @SuppressWarnings("unchecked")
   List<Tuple2<String, Integer>> tuples =Arrays.asList(new Tuple2<>("hello", 1), new Tuple2<>("world", 1));
   JavaPairRDD<String, Integer> initialRDD = streamingContext.sparkContext().parallelizePairs(tuples);
   
   JavaReceiverInputDStream<String> StreamingLines = streamingContext.socketTextStream( "10.0.75.1", Integer.parseInt("9000"), StorageLevels.MEMORY_AND_DISK_SER);
   
   JavaDStream<String> words = StreamingLines.flatMap( str -> Arrays.asList(str.split(" ")).iterator() );
  
   JavaPairDStream<String, Integer> wordCounts = words.mapToPair(str-> new Tuple2<>(str, 1)).reduceByKey((count1,count2) ->count1+count2 );
  


  // Update the cumulative count function
  Function3<String, Optional<Integer>, State<Integer>, Tuple2<String, Integer>> mappingFunc =
      new Function3<String, Optional<Integer>, State<Integer>, Tuple2<String, Integer>>() {
        @Override
        public Tuple2<String, Integer> call(String word, Optional<Integer> one,
            State<Integer> state) {
          int sum = one.orElse(0) + (state.exists() ? state.get() : 0);
          Tuple2<String, Integer> output = new Tuple2<>(word, sum);
          state.update(sum);
          return output;
        }
      };

  // DStream made of get cumulative counts that get updated in every batch
  JavaMapWithStateDStream<String, Integer, Integer, Tuple2<String, Integer>> stateDstream = wordCounts.mapWithState(StateSpec.function(mappingFunc).initialState(initialRDD));

  stateDstream.print();
  streamingContext.start();
  streamingContext.awaitTermination();
}
 
开发者ID:PacktPublishing,项目名称:Apache-Spark-2x-for-Java-Developers,代码行数:40,代码来源:WordCountSocketStateful.java

示例11: main

import org.apache.spark.streaming.Durations; //导入依赖的package包/类
public static void main(String[] args) {
   	//Window Specific property if Hadoop is not instaalled or HADOOP_HOME is not set
	 System.setProperty("hadoop.home.dir", "E:\\hadoop");
   	//Logger rootLogger = LogManager.getRootLogger();
  		//rootLogger.setLevel(Level.WARN); 
       SparkConf conf = new SparkConf().setAppName("KafkaExample").setMaster("local[*]");
       String inputDirectory="E:\\hadoop\\streamFolder\\";
    
       JavaSparkContext sc = new JavaSparkContext(conf);
       JavaStreamingContext streamingContext = new JavaStreamingContext(sc, Durations.seconds(1));
      // streamingContext.checkpoint("E:\\hadoop\\checkpoint");
       Logger rootLogger = LogManager.getRootLogger();
  		rootLogger.setLevel(Level.WARN); 
  		
  		JavaDStream<String> streamfile = streamingContext.textFileStream(inputDirectory);
  		streamfile.print();
  		streamfile.foreachRDD(rdd-> rdd.foreach(x -> System.out.println(x)));
  		
  			   		
  		JavaPairDStream<LongWritable, Text> streamedFile = streamingContext.fileStream(inputDirectory, LongWritable.class, Text.class, TextInputFormat.class);
  	 streamedFile.print();
  		
  	 streamingContext.start();
  	 

       try {
		streamingContext.awaitTermination();
	} catch (InterruptedException e) {
		// TODO Auto-generated catch block
		e.printStackTrace();
	}
}
 
开发者ID:PacktPublishing,项目名称:Apache-Spark-2x-for-Java-Developers,代码行数:33,代码来源:FileStreamingEx.java

示例12: main

import org.apache.spark.streaming.Durations; //导入依赖的package包/类
public static void main(String[] args) throws InterruptedException {

		System.setProperty("hadoop.home.dir", "C:\\softwares\\Winutils");

		SparkSession sparkSession = SparkSession.builder().master("local[*]").appName("Stateful Streaming Example")
				.config("spark.sql.warehouse.dir", "file:////C:/Users/sgulati/spark-warehouse").getOrCreate();

		JavaStreamingContext jssc= new JavaStreamingContext(new JavaSparkContext(sparkSession.sparkContext()),
				Durations.milliseconds(1000));
		JavaReceiverInputDStream<String> inStream = jssc.socketTextStream("10.204.136.223", 9999);
		jssc.checkpoint("C:\\Users\\sgulati\\spark-checkpoint");

		JavaDStream<FlightDetails> flightDetailsStream = inStream.map(x -> {
			ObjectMapper mapper = new ObjectMapper();
			return mapper.readValue(x, FlightDetails.class);
		});
		
		

		JavaPairDStream<String, FlightDetails> flightDetailsPairStream = flightDetailsStream
				.mapToPair(f -> new Tuple2<String, FlightDetails>(f.getFlightId(), f));

		Function3<String, Optional<FlightDetails>, State<List<FlightDetails>>, Tuple2<String, Double>> mappingFunc = (
				flightId, curFlightDetail, state) -> {
			List<FlightDetails> details = state.exists() ? state.get() : new ArrayList<>();

			boolean isLanded = false;

			if (curFlightDetail.isPresent()) {
				details.add(curFlightDetail.get());
				if (curFlightDetail.get().isLanded()) {
					isLanded = true;
				}
			}
			Double avgSpeed = details.stream().mapToDouble(f -> f.getTemperature()).average().orElse(0.0);

			if (isLanded) {
				state.remove();
			} else {
				state.update(details);
			}
			return new Tuple2<String, Double>(flightId, avgSpeed);
		};

		JavaMapWithStateDStream<String, FlightDetails, List<FlightDetails>, Tuple2<String, Double>> streamWithState = flightDetailsPairStream
				.mapWithState(StateSpec.function(mappingFunc).timeout(Durations.minutes(5)));
		
		streamWithState.print();
		jssc.start();
		jssc.awaitTermination();
	}
 
开发者ID:PacktPublishing,项目名称:Apache-Spark-2x-for-Java-Developers,代码行数:52,代码来源:StateFulProcessingExample.java

示例13: main

import org.apache.spark.streaming.Durations; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
 
     System.setProperty("hadoop.home.dir", "E:\\hadoop");
	
  SparkConf sparkConf = new SparkConf().setAppName("WordCountSocketEx").setMaster("local[*]");
  JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, Durations.seconds(1));
  
  List<Tuple2<String, Integer>> tuples = Arrays.asList(new Tuple2<>("hello", 10), new Tuple2<>("world", 10));
  JavaPairRDD<String, Integer> initialRDD = streamingContext.sparkContext().parallelizePairs(tuples);
    

  JavaReceiverInputDStream<String> StreamingLines = streamingContext.socketTextStream( "10.0.75.1", Integer.parseInt("9000"), StorageLevels.MEMORY_AND_DISK_SER);
  
  JavaDStream<String> words = StreamingLines.flatMap( str -> Arrays.asList(str.split(" ")).iterator() );
 
  JavaPairDStream<String, Integer> wordCounts = words.mapToPair(str-> new Tuple2<>(str, 1)).reduceByKey((count1,count2) ->count1+count2 );
 
  wordCounts.print();
  
JavaPairDStream<String, Integer> joinedDstream = wordCounts.transformToPair(
   new Function<JavaPairRDD<String, Integer>, JavaPairRDD<String, Integer>>() {
	    @Override public JavaPairRDD<String, Integer> call(JavaPairRDD<String, Integer> rdd) throws Exception {
	    	rdd.join(initialRDD).mapToPair(new PairFunction<Tuple2<String,Tuple2<Integer,Integer>>, String, Integer>() {
				@Override
				public Tuple2<String, Integer> call(Tuple2<String, Tuple2<Integer, Integer>> joinedTuple)
						throws Exception {
					// TODO Auto-generated method stub
					return new Tuple2<>( joinedTuple._1(), (joinedTuple._2()._1()+joinedTuple._2()._2()) );
				}
			});
		
		return rdd; 				     
	    }
	  });
 
joinedDstream.print();
  streamingContext.start();
  streamingContext.awaitTermination();
}
 
开发者ID:PacktPublishing,项目名称:Apache-Spark-2x-for-Java-Developers,代码行数:40,代码来源:WordCountSocketJava8Ex.java

示例14: createContext

import org.apache.spark.streaming.Durations; //导入依赖的package包/类
protected static JavaStreamingContext createContext(String ip, int port, String checkpointDirectory) {
	SparkConf sparkConf = new SparkConf().setAppName("WordCountRecoverableEx").setMaster("local[*]");
	JavaStreamingContext streamingContext = new JavaStreamingContext(sparkConf, Durations.seconds(1));
	streamingContext.checkpoint(checkpointDirectory);
	// Initial state RDD input to mapWithState
	@SuppressWarnings("unchecked")
	List<Tuple2<String, Integer>> tuples = Arrays.asList(new Tuple2<>("hello", 1), new Tuple2<>("world", 1));
	JavaPairRDD<String, Integer> initialRDD = streamingContext.sparkContext().parallelizePairs(tuples);

	JavaReceiverInputDStream<String> StreamingLines = streamingContext.socketTextStream(ip,port, StorageLevels.MEMORY_AND_DISK_SER);

	JavaDStream<String> words = StreamingLines.flatMap(str -> Arrays.asList(str.split(" ")).iterator());

	JavaPairDStream<String, Integer> wordCounts = words.mapToPair(str -> new Tuple2<>(str, 1))
			.reduceByKey((count1, count2) -> count1 + count2);

	// Update the cumulative count function
	Function3<String, Optional<Integer>, State<Integer>, Tuple2<String, Integer>> mappingFunc = new Function3<String, Optional<Integer>, State<Integer>, Tuple2<String, Integer>>() {
		@Override
		public Tuple2<String, Integer> call(String word, Optional<Integer> one, State<Integer> state) {
			int sum = one.orElse(0) + (state.exists() ? state.get() : 0);
			Tuple2<String, Integer> output = new Tuple2<>(word, sum);
			state.update(sum);
			return output;
		}
	};

	// DStream made of get cumulative counts that get updated in every batch
	JavaMapWithStateDStream<String, Integer, Integer, Tuple2<String, Integer>> stateDstream = wordCounts
			.mapWithState(StateSpec.function(mappingFunc).initialState(initialRDD));

	stateDstream.print();
	return streamingContext;
}
 
开发者ID:PacktPublishing,项目名称:Apache-Spark-2x-for-Java-Developers,代码行数:35,代码来源:WordCountRecoverableEx.java

示例15: start

import org.apache.spark.streaming.Durations; //导入依赖的package包/类
public void start() {
    SparkConf sparkConf = getSparkConf();
    streamingContext = new JavaStreamingContext(sparkConf,
            Durations.seconds(Long.parseLong(config.getStreamingBatchIntervalInSec())));
    JavaInputDStream<MessageAndMetadata<String, byte[]>> dStream = buildInputDStream(streamingContext);
    JavaPairDStream<String, byte[]> pairDStream = dStream.mapToPair(km -> new Tuple2<>(km.key(), km.message()));

    pairDStream.foreachRDD(new ProcessStreamingData<>(config)); // process data
    dStream.foreachRDD(new UpdateOffsetsFn<>(config.getKafkaGroupId(), config.getZkOffsetManager()));
    streamingContext.start();
}
 
开发者ID:ameyamk,项目名称:spark-streaming-direct-kafka,代码行数:12,代码来源:StreamingEngine.java


注:本文中的org.apache.spark.streaming.Durations类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。