当前位置: 首页>>代码示例>>Java>>正文


Java Metadata类代码示例

本文整理汇总了Java中org.apache.spark.sql.types.Metadata的典型用法代码示例。如果您正苦于以下问题:Java Metadata类的具体用法?Java Metadata怎么用?Java Metadata使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


Metadata类属于org.apache.spark.sql.types包,在下文中一共展示了Metadata类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: createNGramDataFrame

import org.apache.spark.sql.types.Metadata; //导入依赖的package包/类
/**
 * Creates a n-gram data frame from text lines.
 * @param lines
 * @return a n-gram data frame.
 */
DataFrame createNGramDataFrame(JavaRDD<String> lines) {
	JavaRDD<Row> rows = lines.map(new Function<String, Row>(){
		private static final long serialVersionUID = -4332903997027358601L;
		
		@Override
		public Row call(String line) throws Exception {
			return RowFactory.create(Arrays.asList(line.split("\\s+")));
		}
	});
	StructType schema = new StructType(new StructField[] {
			new StructField("words",
					DataTypes.createArrayType(DataTypes.StringType), false,
					Metadata.empty()) });
	DataFrame wordDF = new SQLContext(jsc).createDataFrame(rows, schema);
	// build a bigram language model
	NGram transformer = new NGram().setInputCol("words")
			.setOutputCol("ngrams").setN(2);
	DataFrame ngramDF = transformer.transform(wordDF);
	ngramDF.show(10, false);
	return ngramDF;
}
 
开发者ID:phuonglh,项目名称:vn.vitk,代码行数:27,代码来源:NGramBuilder.java

示例2: test_getDataSetResult

import org.apache.spark.sql.types.Metadata; //导入依赖的package包/类
@Test
public void test_getDataSetResult() {

    StructField[] structFields = new StructField[]{
            new StructField("intColumn", DataTypes.IntegerType, true, Metadata.empty()),
            new StructField("stringColumn", DataTypes.StringType, true, Metadata.empty())
    };

    StructType structType = new StructType(structFields);

    List<Row> rows = new ArrayList<>();
    rows.add(RowFactory.create(1, "v1"));
    rows.add(RowFactory.create(2, "v2"));

    Dataset<Row> df = sparkSession.createDataFrame(rows, structType);

    DataSetResult dataSetResult = SparkUtils.getDataSetResult(df);
    Assert.assertEquals(2, dataSetResult.getColumnNames().size());
    Assert.assertEquals(2, dataSetResult.getRows().size());
    Assert.assertEquals(new Integer(1), dataSetResult.getRows().get(0).get(0));
    Assert.assertEquals("v1", dataSetResult.getRows().get(0).get(1));
    Assert.assertEquals(new Integer(2), dataSetResult.getRows().get(1).get(0));
    Assert.assertEquals("v2", dataSetResult.getRows().get(1).get(1));
}
 
开发者ID:uber,项目名称:uberscriptquery,代码行数:25,代码来源:SparkUtilsTest.java

示例3: generateData_week_timepoints_by_10_minutes

import org.apache.spark.sql.types.Metadata; //导入依赖的package包/类
private static Dataset<Row> generateData_week_timepoints_by_10_minutes(SparkSession spark) {
    StructField[] structFields = new StructField[1];
    org.apache.spark.sql.types.DataType dataType = DataTypes.IntegerType;
    String column = "timepoint";
    StructField structField = new StructField(column, dataType, true, Metadata.empty());
    structFields[0] = structField;

    StructType structType = new StructType(structFields);

    List<Row> rows = new ArrayList<>();

    int weekTotalMinutes = 7 * 24 * 60;
    int timepointIntervalMinutes = 10;
    for (int i = 0; i < weekTotalMinutes / timepointIntervalMinutes; i++) {
        Object[] objects = new Object[structFields.length];
        objects[0] = i;
        Row row = RowFactory.create(objects);
        rows.add(row);
    }

    Dataset<Row> df = spark.createDataFrame(rows, structType);
    return df;
}
 
开发者ID:uber,项目名称:uberscriptquery,代码行数:24,代码来源:QueryEngine.java

示例4: parse

import org.apache.spark.sql.types.Metadata; //导入依赖的package包/类
/**
 * Parses a list of PoS-tagged sentences, each on a line and writes the result to an output 
 * file in a specified output format.
 * @param jsc
 * @param sentences
 * @param outputFileName
 * @param outuptFormat
 */
public void parse(JavaSparkContext jsc, List<String> sentences, String outputFileName, OutputFormat outputFormat) {
	JavaRDD<String> input = jsc.parallelize(sentences);
	JavaRDD<Sentence> sents = input.map(new TaggedLineToSentenceFunction());
	JavaRDD<DependencyGraph> graphs = sents.map(new ParsingFunction());
	JavaRDD<Row> rows = graphs.map(new Function<DependencyGraph, Row>() {
		private static final long serialVersionUID = -812004521983071103L;
		public Row call(DependencyGraph graph) {
			return RowFactory.create(graph.getSentence().toString(), graph.dependencies());
		}
	});
	StructType schema = new StructType(new StructField[]{
		new StructField("sentence", DataTypes.StringType, false, Metadata.empty()),	
		new StructField("dependency", DataTypes.StringType, false, Metadata.empty())
	});
	SQLContext sqlContext = new SQLContext(jsc);
	DataFrame df = sqlContext.createDataFrame(rows, schema);
	
	if (outputFormat == OutputFormat.TEXT)  
		df.select("dependency").write().text(outputFileName);
	else 
		df.repartition(1).write().json(outputFileName);
}
 
开发者ID:phuonglh,项目名称:vn.vitk,代码行数:31,代码来源:DependencyParser.java

示例5: fromSchema

import org.apache.spark.sql.types.Metadata; //导入依赖的package包/类
/**
 * Convert a datavec schema to a
 * struct type in spark
 *
 * @param schema the schema to convert
 * @return the datavec struct type
 */
public static StructType fromSchema(Schema schema) {
    StructField[] structFields = new StructField[schema.numColumns()];
    for (int i = 0; i < structFields.length; i++) {
        switch (schema.getColumnTypes().get(i)) {
            case Double:
                structFields[i] = new StructField(schema.getName(i), DataTypes.DoubleType, false, Metadata.empty());
                break;
            case Integer:
                structFields[i] =
                                new StructField(schema.getName(i), DataTypes.IntegerType, false, Metadata.empty());
                break;
            case Long:
                structFields[i] = new StructField(schema.getName(i), DataTypes.LongType, false, Metadata.empty());
                break;
            case Float:
                structFields[i] = new StructField(schema.getName(i), DataTypes.FloatType, false, Metadata.empty());
                break;
            default:
                throw new IllegalStateException(
                                "This api should not be used with strings , binary data or ndarrays. This is only for columnar data");
        }
    }
    return new StructType(structFields);
}
 
开发者ID:deeplearning4j,项目名称:DataVec,代码行数:32,代码来源:DataFrames.java

示例6: generateData_numbers_1k

import org.apache.spark.sql.types.Metadata; //导入依赖的package包/类
private static Dataset<Row> generateData_numbers_1k(SparkSession spark) {
    StructField[] structFields = new StructField[1];
    org.apache.spark.sql.types.DataType dataType = DataTypes.IntegerType;
    String column = "number";
    StructField structField = new StructField(column, dataType, true, Metadata.empty());
    structFields[0] = structField;

    StructType structType = new StructType(structFields);

    List<Row> rows = new ArrayList<>();

    for (int i = 0; i <= 1000; i++) {
        Object[] objects = new Object[structFields.length];
        objects[0] = i;
        Row row = RowFactory.create(objects);
        rows.add(row);
    }

    Dataset<Row> df = spark.createDataFrame(rows, structType);
    return df;
}
 
开发者ID:uber,项目名称:uberscriptquery,代码行数:22,代码来源:QueryEngine.java

示例7: fromSchemaSequence

import org.apache.spark.sql.types.Metadata; //导入依赖的package包/类
/**
 * Convert the DataVec sequence schema to a StructType for Spark, for example for use in
 * {@link #toDataFrameSequence(Schema, JavaRDD)}}
 * <b>Note</b>: as per {@link #toDataFrameSequence(Schema, JavaRDD)}}, the StructType has two additional columns added to it:<br>
 * - Column 0: Sequence UUID (name: {@link #SEQUENCE_UUID_COLUMN}) - a UUID for the original sequence<br>
 * - Column 1: Sequence index (name: {@link #SEQUENCE_INDEX_COLUMN} - an index (integer, starting at 0) for the position
 * of this record in the original time series.<br>
 * These two columns are required if the data is to be converted back into a sequence at a later point, for example
 * using {@link #toRecordsSequence(DataRowsFacade)}
 *
 * @param schema Schema to convert
 * @return StructType for the schema
 */
public static StructType fromSchemaSequence(Schema schema) {
    StructField[] structFields = new StructField[schema.numColumns() + 2];

    structFields[0] = new StructField(SEQUENCE_UUID_COLUMN, DataTypes.StringType, false, Metadata.empty());
    structFields[1] = new StructField(SEQUENCE_INDEX_COLUMN, DataTypes.IntegerType, false, Metadata.empty());

    for (int i = 0; i < schema.numColumns(); i++) {
        switch (schema.getColumnTypes().get(i)) {
            case Double:
                structFields[i + 2] =
                                new StructField(schema.getName(i), DataTypes.DoubleType, false, Metadata.empty());
                break;
            case Integer:
                structFields[i + 2] =
                                new StructField(schema.getName(i), DataTypes.IntegerType, false, Metadata.empty());
                break;
            case Long:
                structFields[i + 2] =
                                new StructField(schema.getName(i), DataTypes.LongType, false, Metadata.empty());
                break;
            case Float:
                structFields[i + 2] =
                                new StructField(schema.getName(i), DataTypes.FloatType, false, Metadata.empty());
                break;
            default:
                throw new IllegalStateException(
                                "This api should not be used with strings , binary data or ndarrays. This is only for columnar data");
        }
    }
    return new StructType(structFields);
}
 
开发者ID:deeplearning4j,项目名称:DataVec,代码行数:45,代码来源:DataFrames.java

示例8: testAgeRangeFloat

import org.apache.spark.sql.types.Metadata; //导入依赖的package包/类
@Test
public void testAgeRangeFloat() {
  StructType schema = new StructType(new StructField[] {
      new StructField("name", DataTypes.StringType, false, Metadata.empty()),
      new StructField("nickname", DataTypes.StringType, false, Metadata.empty()),
      new StructField("age", DataTypes.FloatType, false, Metadata.empty()),
      new StructField("candycrushscore", DataTypes.createDecimalType(), false, Metadata.empty())
  });

  Map<String, Object> configMap = new HashMap<>();
  configMap.put("fields", Lists.newArrayList("age"));
  configMap.put("fieldtype", "float");
  configMap.put("range", Lists.newArrayList(0.1,105.0));
  Config config = ConfigFactory.parseMap(configMap);

  RangeRowRule rule = new RangeRowRule();
  rule.configure("agerange", config);

  Row row1 = new RowWithSchema(schema, "Ian", "Ian", 34.0f, new BigDecimal("0.00"));
  assertTrue("Row should pass rule", rule.check(row1));

  Row row2 = new RowWithSchema(schema, "Webster1", "Websta1", 110.0f, new BigDecimal("450.10"));
  assertFalse("Row should not pass rule", rule.check(row2));

  Row row3 = new RowWithSchema(schema, "", "Ian1", 110.0f, new BigDecimal("450.10"));
  assertFalse("Row should not pass rule", rule.check(row3));

  Row row4 = new RowWithSchema(schema, "First Last", "Ian Last", 100.0f, new BigDecimal("450.10"));
  assertTrue("Row should pass rule", rule.check(row4));
}
 
开发者ID:cloudera-labs,项目名称:envelope,代码行数:31,代码来源:TestRangeRowRule.java

示例9: testPruneByStepValueTrue

import org.apache.spark.sql.types.Metadata; //导入依赖的package包/类
@Test
public void testPruneByStepValueTrue() {
  StructType schema = new StructType(new StructField[] {
      new StructField("outcome", DataTypes.BooleanType, false, Metadata.empty())
  });
  List<Row> rows = Lists.newArrayList(
      RowFactory.create(true)
  );
  Dataset<Row> ds = Contexts.getSparkSession().createDataFrame(rows, schema);
  step1.setData(ds);
  
  Map<String, Object> step2ConfigMap = Maps.newHashMap();
  step2ConfigMap.put("dependencies", Lists.newArrayList("step1"));
  step2ConfigMap.put(DecisionStep.IF_TRUE_STEP_NAMES_PROPERTY, Lists.newArrayList("step3", "step7"));
  step2ConfigMap.put(DecisionStep.DECISION_METHOD_PROPERTY, DecisionStep.STEP_BY_VALUE_DECISION_METHOD);
  step2ConfigMap.put(DecisionStep.STEP_BY_VALUE_STEP_PROPERTY, "step1");
  Config step2Config = ConfigFactory.parseMap(step2ConfigMap);
  RefactorStep step2 = new DecisionStep("step2", step2Config);
  steps.add(step2);
  
  Set<Step> refactored = step2.refactor(steps);
  
  assertEquals(refactored, Sets.newHashSet(step1, step2, step3, step4, step7, step8));
}
 
开发者ID:cloudera-labs,项目名称:envelope,代码行数:25,代码来源:TestDecisionStep.java

示例10: testPruneByStepValueFalse

import org.apache.spark.sql.types.Metadata; //导入依赖的package包/类
@Test
public void testPruneByStepValueFalse() {
  StructType schema = new StructType(new StructField[] {
      new StructField("outcome", DataTypes.BooleanType, false, Metadata.empty())
  });
  List<Row> rows = Lists.newArrayList(
      RowFactory.create(false)
  );
  Dataset<Row> ds = Contexts.getSparkSession().createDataFrame(rows, schema);
  step1.setData(ds);
  
  Map<String, Object> step2ConfigMap = Maps.newHashMap();
  step2ConfigMap.put("dependencies", Lists.newArrayList("step1"));
  step2ConfigMap.put(DecisionStep.IF_TRUE_STEP_NAMES_PROPERTY, Lists.newArrayList("step3", "step7"));
  step2ConfigMap.put(DecisionStep.DECISION_METHOD_PROPERTY, DecisionStep.STEP_BY_VALUE_DECISION_METHOD);
  step2ConfigMap.put(DecisionStep.STEP_BY_VALUE_STEP_PROPERTY, "step1");
  Config step2Config = ConfigFactory.parseMap(step2ConfigMap);
  RefactorStep step2 = new DecisionStep("step2", step2Config);
  steps.add(step2);
  
  Set<Step> refactored = step2.refactor(steps);
  
  assertEquals(refactored, Sets.newHashSet(step1, step2, step5, step6));
}
 
开发者ID:cloudera-labs,项目名称:envelope,代码行数:25,代码来源:TestDecisionStep.java

示例11: getSchemaType

import org.apache.spark.sql.types.Metadata; //导入依赖的package包/类
@Override public DataType getSchemaType() {
  StructField[] fields = new StructField[children.size()];
  for (int i = 0; i < children.size(); i++) {
    fields[i] = new StructField(children.get(i).getName(), null, true,
        Metadata.empty());
  }
  return new StructType(fields);
}
 
开发者ID:carbondata,项目名称:carbondata,代码行数:9,代码来源:StructQueryType.java

示例12: createDataFrame

import org.apache.spark.sql.types.Metadata; //导入依赖的package包/类
/**
 * Creates a data frame from a list of tagged sentences.
 * @param taggedSentences
 * @return a data frame of two columns: "sentence" and "partOfSpeech".
 */
public DataFrame createDataFrame(List<String> taggedSentences) {
	List<String> wordSequences = new LinkedList<String>();
	List<String> tagSequences = new LinkedList<String>();
	for (String taggedSentence : taggedSentences) {
		StringBuilder wordBuf = new StringBuilder();
		StringBuilder tagBuf = new StringBuilder();
		String[] tokens = taggedSentence.split("\\s+");
		for (String token : tokens) {
			String[] parts = token.split("/");
			if (parts.length == 2) {
				wordBuf.append(parts[0]);
				wordBuf.append(' ');
				tagBuf.append(parts[1]);
				tagBuf.append(' ');
			} else { // this token is "///"  
				wordBuf.append('/');
				wordBuf.append(' ');
				tagBuf.append('/');
				tagBuf.append(' ');
			}
		}
		wordSequences.add(wordBuf.toString().trim());
		tagSequences.add(tagBuf.toString().trim());
	}
	if (verbose) {
		System.out.println("Number of sentences = " + wordSequences.size());
	}
	List<Row> rows = new LinkedList<Row>();
	for (int i = 0; i < wordSequences.size(); i++) {
		rows.add(RowFactory.create(wordSequences.get(i), tagSequences.get(i)));
	}
	JavaRDD<Row> jrdd = jsc.parallelize(rows);
	StructType schema = new StructType(new StructField[]{
			new StructField("sentence", DataTypes.StringType, false, Metadata.empty()),
			new StructField("partOfSpeech", DataTypes.StringType, false, Metadata.empty())
		});
		
	return new SQLContext(jsc).createDataFrame(jrdd, schema);
}
 
开发者ID:phuonglh,项目名称:vn.vitk,代码行数:45,代码来源:Tagger.java

示例13: tag

import org.apache.spark.sql.types.Metadata; //导入依赖的package包/类
/**
 * Tags a list of sequences and returns a list of tag sequences.
 * @param sentences
 * @return a list of tagged sequences.
 */
public List<String> tag(List<String> sentences) {
	List<Row> rows = new LinkedList<Row>();
	for (String sentence : sentences) {
		rows.add(RowFactory.create(sentence));
	}
	StructType schema = new StructType(new StructField[]{
		new StructField("sentence", DataTypes.StringType, false, Metadata.empty())	
	});
	SQLContext sqlContext = new SQLContext(jsc);
	DataFrame input = sqlContext.createDataFrame(rows, schema);
	if (cmmModel != null) {
		DataFrame output = cmmModel.transform(input).repartition(1);
		return output.javaRDD().map(new RowToStringFunction(1)).collect();
	} else {
		System.err.println("Tagging model is null. You need to create or load a model first.");
		return null;
	}
}
 
开发者ID:phuonglh,项目名称:vn.vitk,代码行数:24,代码来源:Tagger.java

示例14: transform

import org.apache.spark.sql.types.Metadata; //导入依赖的package包/类
@Override
public DataFrame transform(DataFrame dataset) {
	JavaRDD<Row> output = dataset.javaRDD().map(new DecodeFunction());
	StructType schema = new StructType(new StructField[]{
		new StructField("sentence", DataTypes.StringType, false, Metadata.empty()),
		new StructField("prediction", DataTypes.StringType, false, Metadata.empty())
	});
	return dataset.sqlContext().createDataFrame(output, schema);
}
 
开发者ID:phuonglh,项目名称:vn.vitk,代码行数:10,代码来源:CMMModel.java

示例15: load

import org.apache.spark.sql.types.Metadata; //导入依赖的package包/类
@Override
public CMMModel load(String path) {
	org.apache.spark.ml.util.DefaultParamsReader.Metadata metadata = DefaultParamsReader.loadMetadata(path, sc(), CMMModel.class.getName());
	String pipelinePath = new Path(path, "pipelineModel").toString();
	PipelineModel pipelineModel = PipelineModel.load(pipelinePath);
	String dataPath = new Path(path, "data").toString();
	DataFrame df = sqlContext().read().format("parquet").load(dataPath);
	Row row = df.select("markovOrder", "weights", "tagDictionary").head();
	// load the Markov order
	MarkovOrder order = MarkovOrder.values()[row.getInt(0)-1];
	// load the weight vector
	Vector w = row.getAs(1);
	// load the tag dictionary
	@SuppressWarnings("unchecked")
	scala.collection.immutable.HashMap<String, WrappedArray<Integer>> td = (scala.collection.immutable.HashMap<String, WrappedArray<Integer>>)row.get(2);
	Map<String, Set<Integer>> tagDict = new HashMap<String, Set<Integer>>();
	Iterator<Tuple2<String, WrappedArray<Integer>>> iterator = td.iterator();
	while (iterator.hasNext()) {
		Tuple2<String, WrappedArray<Integer>> tuple = iterator.next();
		Set<Integer> labels = new HashSet<Integer>();
		scala.collection.immutable.List<Integer> list = tuple._2().toList();
		for (int i = 0; i < list.size(); i++)
			labels.add(list.apply(i));
		tagDict.put(tuple._1(), labels);
	}
	// build a CMM model
	CMMModel model = new CMMModel(pipelineModel, w, order, tagDict);
	DefaultParamsReader.getAndSetParams(model, metadata);
	return model;
}
 
开发者ID:phuonglh,项目名称:vn.vitk,代码行数:31,代码来源:CMMModel.java


注:本文中的org.apache.spark.sql.types.Metadata类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。