当前位置: 首页>>代码示例>>Java>>正文


Java CrossValidatorModel类代码示例

本文整理汇总了Java中org.apache.spark.ml.tuning.CrossValidatorModel的典型用法代码示例。如果您正苦于以下问题:Java CrossValidatorModel类的具体用法?Java CrossValidatorModel怎么用?Java CrossValidatorModel使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


CrossValidatorModel类属于org.apache.spark.ml.tuning包,在下文中一共展示了CrossValidatorModel类的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: trainWithCrossValidation

import org.apache.spark.ml.tuning.CrossValidatorModel; //导入依赖的package包/类
private static Transformer trainWithCrossValidation(DataFrame train, Pipeline pipeline, ParamMap[] paramGrid) {
	// We now treat the Pipeline as an Estimator, wrapping it in a CrossValidator instance.
	// This will allow us to jointly choose parameters for all Pipeline stages.
	// A CrossValidator requires an Estimator, a set of Estimator ParamMaps, and an Evaluator.
	// Note that the evaluator here is a BinaryClassificationEvaluator and its default metric
	// is areaUnderROC.
	CrossValidator cv = new CrossValidator()
	  .setEstimator(pipeline)
	  .setEvaluator(new BinaryClassificationEvaluator())
	  .setEstimatorParamMaps(paramGrid)
	  .setNumFolds(10); // Use 3+ in practice

	// Run cross-validation, and choose the best set of parameters.
	CrossValidatorModel model = cv.fit(train);
	
	return model;
}
 
开发者ID:mhardalov,项目名称:news-credibility,代码行数:18,代码来源:NewsCredibilityMain.java

示例2: predictRUL

import org.apache.spark.ml.tuning.CrossValidatorModel; //导入依赖的package包/类
/**
 * Stored Procedure for Predictions
 */
public static void predictRUL(String sensorTableName,
		String resultsTableName, String savedModelPath, int loopinterval) {
	
	try {
		
		//Initialize variables
		if (sensorTableName == null || sensorTableName.length() == 0)
			sensorTableName = "IOT.SENSOR_AGG_1_VIEW";
		if (resultsTableName == null || resultsTableName.length() == 0)
			resultsTableName = "IOT.PREDICTION_EXT";
		if (savedModelPath == null || savedModelPath.length() == 0)
			savedModelPath = "/tmp";
		if (!savedModelPath.endsWith("/"))
			savedModelPath = savedModelPath + "/";
		savedModelPath += "model/";

		String jdbcUrl = "jdbc:splice://localhost:1527/splicedb;user=splice;password=admin;useSpark=true";
		Connection conn = DriverManager.getConnection(jdbcUrl);
		
		SparkSession sparkSession = SpliceSpark.getSession();
		
		
		//Specify the data for predictions
		Map<String, String> options = new HashMap<String, String>();
		options.put("driver", "com.splicemachine.db.jdbc.ClientDriver");
		options.put("url", jdbcUrl);
		options.put("dbtable", sensorTableName);
		

		//Load Model to use for predictins
		CrossValidatorModel cvModel = CrossValidatorModel
				.load(savedModelPath);
		
		//Keep checking for new data and make predictions
		while (loopinterval > 0) {
			//Sensor data requiring predictions
			Dataset<Row> sensords = sparkSession.read().format("jdbc")
					.options(options).load();

			//prepare data
			sensords = sensords.na().fill(0);

			//make predictions
			Dataset<Row> predictions = cvModel.transform(sensords)
					.select("ENGINE_TYPE", "UNIT", "TIME", "prediction")
					.withColumnRenamed("prediction", "PREDICTION");
			
			//Save predictions
			String fileName = "temp_pred_"
					+ RandomStringUtils.randomAlphabetic(6).toLowerCase();

			predictions.write().mode(SaveMode.Append)
					.csv("/tmp/data_pred/predictions");

			//Mark records for which predictions are made
			PreparedStatement pStmtDel = conn
					.prepareStatement("delete  from IOT.TO_PROCESS_SENSOR s where exists (select 1 from IOT.PREDICTIONS_EXT p where p.engine_type = s.engine_type and p.unit= s.unit and p.time=s.time )");
			pStmtDel.execute();
			pStmtDel.close();
		}

		
	} catch (SQLException sqle) {
		System.out.println("Error  :::::" + sqle.toString());
		LOG.error("Exception in getColumnStatistics", sqle);
		sqle.printStackTrace();
	}

}
 
开发者ID:splicemachine,项目名称:splice-community-sample-code,代码行数:73,代码来源:RULPredictiveModel.java


注:本文中的org.apache.spark.ml.tuning.CrossValidatorModel类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。