本文整理汇总了Java中org.apache.mahout.math.Vector.Element类的典型用法代码示例。如果您正苦于以下问题:Java Element类的具体用法?Java Element怎么用?Java Element使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
Element类属于org.apache.mahout.math.Vector包,在下文中一共展示了Element类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: vectorAssign
import org.apache.mahout.math.Vector.Element; //导入依赖的package包/类
/**
* This method overrides the Vector.assign method to allow optimization for
* ZeroIndifferent functions
*
* @param vector
* the vector to be updated
* @param other
* the other vector
* @param function
* the function that operates on elements of the two vectors
* @return the modified vector
*/
static public Vector vectorAssign(Vector vector, Vector other, ZeroIndifferentFunc function) {
if (vector.size() != other.size()) {
throw new CardinalityException(vector.size(), other.size());
}
// special case: iterate only over the non-zero elements of the vector to
// add
Iterator<Element> it = other.nonZeroes().iterator();
Element e;
while (it.hasNext() && (e = it.next()) != null) {
double val = vector.getQuick(e.index());
double newVal = function.apply(val, e.get());
vector.setQuick(e.index(), newVal);
}
return vector;
}
示例2: printSequenceFile
import org.apache.mahout.math.Vector.Element; //导入依赖的package包/类
private static void printSequenceFile(String inputStr, int printRow) throws IOException {
Configuration conf = new Configuration();
Path finalNumberFile = new Path(inputStr);
SequenceFile.Reader reader = new SequenceFile.Reader(FileSystem.get(conf),
finalNumberFile, conf);
IntWritable key = new IntWritable();
VectorWritable value = new VectorWritable();
Vector printVector = null;
while (reader.next(key, value)) {
if (key.get() == printRow)
printVector = value.get();
int cnt = 0;
Iterator<Element> iter = value.get().nonZeroes().iterator();
for (; iter.hasNext(); iter.next())
cnt++;
System.out.println("# "+ key + " " + cnt + " " + value.get().zSum());
}
reader.close();
if (printVector != null)
System.out.println("##### "+ printRow + " " + printVector);
else
System.out.println("##### "+ key + " " + value.get());
}
示例3: nextVector
import org.apache.mahout.math.Vector.Element; //导入依赖的package包/类
@Override
public MySparseVector nextVector() throws IOException {
if(!vecIterator.hasNext()) return null;
Pair<Text, VectorWritable> entry = vecIterator.next();
String name = entry.getFirst().toString();
VectorWritable mahoutVector = entry.getSecond();
ArrayList<Integer> indices = new ArrayList();
ArrayList<Double> values = new ArrayList();
for(Element e: mahoutVector.get().all()){
double value =e.get();
if (value==0) continue;
values.add(value);
int index= e.index();
indices.add(index);
}
return new MySparseVector(indices, values);
}
示例4: train
import org.apache.mahout.math.Vector.Element; //导入依赖的package包/类
public Vector train(Vector datapoint) {
this.initializeAtoms(datapoint);
Vector projection = this.transformer.transform(datapoint, this.dictionaryMatrix);
for (int i=0; i < this.numberOfAtoms; i++) {
Vector atom = this.dictionaryMatrix.viewColumn(i);
double projectionWeight = projection.get(i);
Vector difference = atom.minus(datapoint);
for (Element elem : difference.nonZeroes()) {
atom.incrementQuick(elem.index(), - this.learningRate * projectionWeight * elem.get());
}
}
this.regularize();
this.transformer.clearCaches();
return projection;
}
示例5: regularize
import org.apache.mahout.math.Vector.Element; //导入依赖的package包/类
private void regularize() {
for (int i=0; i < this.numberOfAtoms; i++) {
Vector atom = this.dictionaryMatrix.viewColumn(i);
List<Integer> indicesToRemove = new ArrayList<Integer>();
for (Element elem : atom.nonZeroes()) {
double regularizedValue = elem.get() - (this.learningRate
* (elem.get()
* this.l2Penalty
+ this.l1Penalty * Math.signum(elem.get())));
if (regularizedValue == 0.0 || Math.abs(regularizedValue) < this.l1Penalty) {
indicesToRemove.add(elem.index());
} else {
atom.setQuick(elem.index(), regularizedValue);
}
}
for (int indexToRemove : indicesToRemove) {
atom.setQuick(indexToRemove, 0.0);
}
}
}
示例6: printDistributedRowMatrix
import org.apache.mahout.math.Vector.Element; //导入依赖的package包/类
public int printDistributedRowMatrix() {
System.out.println("RowPath: " + this.rowPath);
Iterator<MatrixSlice> iterator = this.iterateAll();
int count = 0;
while (iterator.hasNext()) {
MatrixSlice slice = iterator.next();
Vector v = slice.vector();
int size = v.size();
for (int i = 0; i < size; i++) {
Element e = v.getElement(i);
count++;
System.out.print(e.get() + " ");
}
System.out.println();
}
return count;
}
示例7: computePrincipalComponents
import org.apache.mahout.math.Vector.Element; //导入依赖的package包/类
/**
* Compute principal component analysis where the input is a path for a hadoop sequence File <IntWritable key, VectorWritable value>
* @param sc
* Spark context that contains the configuration parameters and represents connection to the cluster
* (used to create RDDs, accumulators and broadcast variables on that cluster)
* @param inputPath
* Path to the sequence file that represents the input matrix
* @param nRows
* Number of rows in input Matrix
* @param nCols
* Number of columns in input Matrix
* @param nPCs
* Number of desired principal components
* @param errRate
* The sampling rate that is used for computing the reconstruction error
* @param maxIterations
* Maximum number of iterations before terminating
* @return Matrix of size nCols X nPCs having the desired principal components
*/
public static org.apache.spark.mllib.linalg.Matrix computePrincipalComponents(JavaSparkContext sc, String inputPath, String outputPath, final int nRows, final int nCols, final int nPCs, final double errRate, final int maxIterations, final int computeProjectedMatrix) {
//Read from sequence file
JavaPairRDD<IntWritable,VectorWritable> seqVectors = sc.sequenceFile(inputPath, IntWritable.class, VectorWritable.class);
//Convert sequence file to RDD<org.apache.spark.mllib.linalg.Vector> of Vectors
JavaRDD<org.apache.spark.mllib.linalg.Vector> vectors=seqVectors.map(new Function<Tuple2<IntWritable,VectorWritable>, org.apache.spark.mllib.linalg.Vector>() {
public org.apache.spark.mllib.linalg.Vector call(Tuple2<IntWritable, VectorWritable> arg0)
throws Exception {
org.apache.mahout.math.Vector mahoutVector = arg0._2.get();
Iterator<Element> elements = mahoutVector.nonZeroes().iterator();
ArrayList<Tuple2<Integer, Double>> tupleList = new ArrayList<Tuple2<Integer, Double>>();
while(elements.hasNext())
{
Element e = elements.next();
if(e.index() >= nCols || e.get() == 0 )
continue;
Tuple2<Integer,Double> tuple = new Tuple2<Integer,Double>(e.index(), e.get());
tupleList.add(tuple);
}
org.apache.spark.mllib.linalg.Vector sparkVector = Vectors.sparse(nCols,tupleList);
return sparkVector;
}
}).persist(StorageLevel.MEMORY_ONLY_SER());
return computePrincipalComponents(sc, vectors, outputPath, nRows, nCols, nPCs, errRate, maxIterations, computeProjectedMatrix);
}
示例8: computeProd2piR
import org.apache.mahout.math.Vector.Element; //导入依赖的package包/类
/**
* Compute the product(r[i]*SQRT2PI) over all i. Note that the cluster Radius
* corresponds to the Stdev of a Gaussian and the Center to its Mean.
*/
private void computeProd2piR() {
zProd2piR = 1.0;
for (Iterator<Element> it = getRadius().iterateNonZero(); it.hasNext();) {
Element radius = it.next();
zProd2piR *= radius.get() * UncommonDistributions.SQRT2PI;
}
}
示例9: sumXminusCdivRsquared
import org.apache.mahout.math.Vector.Element; //导入依赖的package包/类
/**
* @param x
* a Vector
* @return the zSum(((x[i]-c[i])/r[i])^2) over all i
*/
private double sumXminusCdivRsquared(Vector x) {
double result = 0;
for (Iterator<Element> it = getRadius().iterateNonZero(); it.hasNext();) {
Element radiusElem = it.next();
int index = radiusElem.index();
double quotient = (x.get(index) - getCenter().get(index))
/ radiusElem.get();
result += quotient * quotient;
}
return result;
}
示例10: writeAllAboveThreshold
import org.apache.mahout.math.Vector.Element; //导入依赖的package包/类
private static void writeAllAboveThreshold(List<Cluster> clusterModels, Double clusterClassificationThreshold,
SequenceFile.Writer writer, VectorWritable vw, Vector pdfPerCluster) throws IOException {
Iterator<Element> iterateNonZero = pdfPerCluster.iterateNonZero();
while (iterateNonZero.hasNext()) {
Element pdf = iterateNonZero.next();
if (pdf.get() >= clusterClassificationThreshold) {
WeightedVectorWritable wvw = new WeightedVectorWritable(pdf.get(), vw.get());
int clusterIndex = pdf.index();
write(clusterModels, writer, wvw, clusterIndex);
}
}
}
示例11: writeAllAboveThreshold
import org.apache.mahout.math.Vector.Element; //导入依赖的package包/类
private void writeAllAboveThreshold(VectorWritable vw, Context context,
Vector pdfPerCluster) throws IOException, InterruptedException {
Iterator<Element> iterateNonZero = pdfPerCluster.iterateNonZero();
while (iterateNonZero.hasNext()) {
Element pdf = iterateNonZero.next();
if (pdf.get() >= threshold) {
int clusterIndex = pdf.index();
write(vw, context, clusterIndex, pdf.get());
}
}
}
示例12: map
import org.apache.mahout.math.Vector.Element; //导入依赖的package包/类
@Override
protected void map(WritableComparable<?> key, VectorWritable value, Context context) throws IOException,
InterruptedException {
Vector probabilities = classifier.classify(value.get());
Vector selections = policy.select(probabilities);
for (Iterator<Element> it = selections.iterateNonZero(); it.hasNext();) {
Element el = it.next();
classifier.train(el.index(), value.get(), el.get());
}
}
示例13: distance
import org.apache.mahout.math.Vector.Element; //导入依赖的package包/类
/**
* Math.pow is clever about integer-valued doubles
*/
@Override
public double distance(Vector v1, Vector v2) {
Vector distVector = v1.minus(v2);
double sum = 0.0;
Iterator<Element> it = distVector.iterateNonZero();
while (it.hasNext()) {
Element e = it.next();
sum += Math.pow(Math.abs(e.get()), exponent);
}
return Math.pow(sum, 1.0 / exponent);
}
示例14: computeAverageNonzeroElementRank
import org.apache.mahout.math.Vector.Element; //导入依赖的package包/类
public static double computeAverageNonzeroElementRank(Vector inputVector, Vector ranking) {
RankMap rankMap = getRankMap(ranking);
double averageRank = 0.0;
for (Element elem : inputVector.nonZeroes()) {
averageRank += rankMap.get(elem.index());
}
averageRank = averageRank / inputVector.getNumNonZeroElements();
return averageRank;
}
示例15: transposedDictionaryTimesDatapoint
import org.apache.mahout.math.Vector.Element; //导入依赖的package包/类
public static Vector transposedDictionaryTimesDatapoint(SparseColumnMatrix dictionary, Vector datapoint) {
Vector output = new DenseVector(dictionary.numCols());
for (int i=0; i < dictionary.numCols(); i++) {
Vector row = dictionary.viewColumn(i);
double value = 0.0;
for (Element elem : row.nonZeroes()) {
value = value + elem.get() * datapoint.get(elem.index());
}
output.setQuick(i, value);
}
return output;
}