当前位置: 首页>>代码示例>>Java>>正文


Java GenericRecommenderIRStatsEvaluator类代码示例

本文整理汇总了Java中org.apache.mahout.cf.taste.impl.eval.GenericRecommenderIRStatsEvaluator的典型用法代码示例。如果您正苦于以下问题:Java GenericRecommenderIRStatsEvaluator类的具体用法?Java GenericRecommenderIRStatsEvaluator怎么用?Java GenericRecommenderIRStatsEvaluator使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


GenericRecommenderIRStatsEvaluator类属于org.apache.mahout.cf.taste.impl.eval包,在下文中一共展示了GenericRecommenderIRStatsEvaluator类的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: IRState

import org.apache.mahout.cf.taste.impl.eval.GenericRecommenderIRStatsEvaluator; //导入依赖的package包/类
public void IRState(String taskName) {
    String itemmodelsPath = RecommendConfig.class.getResource("/").getPath() + "itemmodels.csv";
    HadoopUtil.download(taskName, itemmodelsPath, false);
    try {
        DataModel fileDataModel = new FileDataModel(new File(itemmodelsPath));
        RecommenderIRStatsEvaluator irStatsEvaluator = new GenericRecommenderIRStatsEvaluator();
        IRStatistics irStatistics = irStatsEvaluator.evaluate(new RecommenderBuilder() {
            @Override
            public org.apache.mahout.cf.taste.recommender.Recommender buildRecommender(final DataModel dataModel) throws TasteException {
                UserSimilarity userSimilarity = new PearsonCorrelationSimilarity(dataModel);
                UserNeighborhood userNeighborhood = new NearestNUserNeighborhood(5, userSimilarity, dataModel);
                return new GenericUserBasedRecommender(dataModel, userNeighborhood, userSimilarity);
            }
        }, new DataModelBuilder() {
            @Override
            public DataModel buildDataModel(final FastByIDMap<PreferenceArray> fastByIDMap) {
                return new GenericDataModel(fastByIDMap);
            }
        }, fileDataModel, null, 5, GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1.0);
        System.out.println("查准率:" + irStatistics.getPrecision());
        System.out.println("查全率:" + irStatistics.getRecall());
    } catch (TasteException | IOException e) {
        e.printStackTrace();
    }
}
 
开发者ID:babymm,项目名称:mmsns,代码行数:26,代码来源:MahoutRecommender.java

示例2: main

import org.apache.mahout.cf.taste.impl.eval.GenericRecommenderIRStatsEvaluator; //导入依赖的package包/类
public static void main(String[] args) throws IOException, TasteException {
	RandomUtils.useTestSeed();
	
	final DataModel model = new FileDataModel(new File("data/intro.csv"));
	
	RecommenderIRStatsEvaluator evaluator = 
			new GenericRecommenderIRStatsEvaluator();
	
	RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
		
		public Recommender buildRecommender(DataModel dataModel) throws TasteException {
			UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
			UserNeighborhood neighborhood = 
					new NearestNUserNeighborhood(2, similarity, model);
			return new GenericUserBasedRecommender(model, neighborhood, similarity);
		}
	};
	
	IRStatistics stats = evaluator.evaluate(recommenderBuilder, null, model, null, 2, 
			GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1.0);
	
	System.out.println(stats.getPrecision());
	System.out.println(stats.getRecall());
}
 
开发者ID:tensorchen,项目名称:rrs,代码行数:25,代码来源:RecommenderIRStatsEvaluatorTest.java

示例3: statsEvaluator

import org.apache.mahout.cf.taste.impl.eval.GenericRecommenderIRStatsEvaluator; //导入依赖的package包/类
/**
 * statsEvaluator
 */
public static void statsEvaluator(RecommenderBuilder rb, DataModelBuilder mb, DataModel m, int topn) throws TasteException {
    RecommenderIRStatsEvaluator evaluator = new GenericRecommenderIRStatsEvaluator();
    IRStatistics stats = evaluator.evaluate(rb, mb, m, null, topn, GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1.0);
    // System.out.printf("Recommender IR Evaluator: %s\n", stats);
    System.out.printf("Recommender IR Evaluator: [Precision:%s,Recall:%s]\n", stats.getPrecision(), stats.getRecall());
}
 
开发者ID:Hope6537,项目名称:hope-tactical-equipment,代码行数:10,代码来源:RecommendFactory.java

示例4: runALSSVDRecommender

import org.apache.mahout.cf.taste.impl.eval.GenericRecommenderIRStatsEvaluator; //导入依赖的package包/类
private static void runALSSVDRecommender(DataModel dataModel)
		throws TasteException {

	System.out.println("Start of Running an ALS SVD Recommendation");
	RecommenderBuilder recommenderBuilder = EEGVideoRecommender.buildSVDRecommender();

	SVDRecommender recommender = (SVDRecommender) recommenderBuilder
			.buildRecommender(dataModel);

	RunningAverage runningAverage = new FullRunningAverage();

	LongPrimitiveIterator userIDs = dataModel.getUserIDs();

	while (userIDs.hasNext()) {
		long userID = userIDs.nextLong();

		for (Preference pref : dataModel.getPreferencesFromUser(userID)) {

			double ratingValue = pref.getValue();
			double preferenceEstimate = recommender.estimatePreference(
					userID, pref.getItemID());

			System.out.println(userID + "," + pref.getItemID() + ","
					+ ratingValue);
			double errorValue = ratingValue - preferenceEstimate;
			runningAverage.addDatum(errorValue * errorValue);
		}
	}

	double rmse = Math.sqrt(runningAverage.getAverage());
	System.out.println(rmse);

	// Recommender Evaluation -- Average Absolute Difference Evaluator
	RecommenderEvaluator absoluteDifferenceEvaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();
	double score = absoluteDifferenceEvaluator.evaluate(recommenderBuilder,
			null, dataModel, 0.9, 1.0);
	System.out.println("ALS-based Recommender Average Score is: " + score);

	// Recommender Evaluation -- RMS Evaluator
	RecommenderEvaluator rmsEvaluator = new RMSRecommenderEvaluator();
	double rmsscore = rmsEvaluator.evaluate(recommenderBuilder, null,
			dataModel, 0.9, 1.0);
	System.out.println("ALS-based Recommender RMS Score is:" + rmsscore);

	// Recommender Evaluation -- IRStats Evaluator
	RecommenderIRStatsEvaluator irStatsEvaluator = new GenericRecommenderIRStatsEvaluator();
	IRStatistics stats = irStatsEvaluator.evaluate(recommenderBuilder,
			null, dataModel, null, 2,
			GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1.0);

	System.out.println("Precision Valus is : " + stats.getPrecision());
	System.out.println("Recall Value is : " + stats.getRecall());

	System.out.println("End of Running an ALS SVD Recommendation");
}
 
开发者ID:melrefaey,项目名称:EEGoVid,代码行数:56,代码来源:EEGVideoEvaluator.java

示例5: runUserBasedRecommender

import org.apache.mahout.cf.taste.impl.eval.GenericRecommenderIRStatsEvaluator; //导入依赖的package包/类
private static void runUserBasedRecommender(DataModel dataModel)
		throws TasteException {

	UserSimilarity userSimilarity = RecommParametersMeasures
			.getLogLikelihoodSimilarity(dataModel);

	UserNeighborhood neighborhood = RecommParametersMeasures.getThreshold(
			dataModel, userSimilarity, 0.1);

	RecommenderBuilder recommenderBuilder = EEGVideoRecommender.userBuilder(
			userSimilarity, neighborhood);

	for (LongPrimitiveIterator users = dataModel.getUserIDs(); users
			.hasNext();) {
		long userId = users.nextLong();

		List<RecommendedItem> recommendations = recommenderBuilder
				.buildRecommender(dataModel).recommend(userId, 1);

		for (RecommendedItem recommendation : recommendations) {
			System.out.println(userId + "," + recommendation.getItemID()
					+ "," + recommendation.getValue());
		}

	}

	// Recommender Evaluation -- Average Absolute Difference Evaluator
	RecommenderEvaluator absoluteDifferenceEvaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();
	double score = absoluteDifferenceEvaluator.evaluate(recommenderBuilder,
			null, dataModel, 0.9, 1.0);
	System.out.println("User-based Recommender Average Score is: " + score);

	// Recommender Evaluation -- RMS Evaluator
	RecommenderEvaluator rmsEvaluator = new RMSRecommenderEvaluator();
	double rmsscore = rmsEvaluator.evaluate(recommenderBuilder, null,
			dataModel, 0.7, 0.3);
	System.out.println("User-based Recommende RMS Score is:" + rmsscore);

	// Recommender Evaluation -- IRStats Evaluator
	RecommenderIRStatsEvaluator irStatsEvaluator = new GenericRecommenderIRStatsEvaluator();
	IRStatistics stats = irStatsEvaluator.evaluate(recommenderBuilder,
			null, dataModel, null, 1,
			GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1);
	System.out.println("Precision Valus is : " + stats.getPrecision());
	System.out.println("Recall Value is : " + stats.getRecall());

}
 
开发者ID:melrefaey,项目名称:EEGoVid,代码行数:48,代码来源:EEGVideoEvaluator.java

示例6: runItemBasedRecommender

import org.apache.mahout.cf.taste.impl.eval.GenericRecommenderIRStatsEvaluator; //导入依赖的package包/类
private static void runItemBasedRecommender(DataModel dataModel)
		throws TasteException {

	TanimotoCoefficientSimilarity tanimotoSimilarity = new TanimotoCoefficientSimilarity(
			dataModel);

	GenericItemBasedRecommender recommender = new GenericItemBasedRecommender(
			dataModel, tanimotoSimilarity);

	RecommenderBuilder recommenderBuilder = EEGVideoRecommender
			.itemBuilder(tanimotoSimilarity);

	for (LongPrimitiveIterator items = dataModel.getItemIDs(); items
			.hasNext();) {
		long itemId = items.nextLong();
		List<RecommendedItem> recommendations = recommender
				.mostSimilarItems(itemId, 5);

		for (RecommendedItem recommendation : recommendations) {
			System.out.println(itemId + "," + recommendation.getItemID()
					+ "," + recommendation.getValue());
		}

	}

	// Recommender Evaluation -- Average Absolute Difference Evaluator
	RecommenderEvaluator absoluteDifferenceEvaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();
	double score = absoluteDifferenceEvaluator.evaluate(recommenderBuilder,
			null, dataModel, 0.7, 0.3);
	System.out.println("Item-based Recommender Average Score is: " + score);

	// Recommender Evaluation -- RMS Evaluator
	RecommenderEvaluator rmsEvaluator = new RMSRecommenderEvaluator();
	double rmsscore = rmsEvaluator.evaluate(recommenderBuilder, null,
			dataModel, 0.7, 0.3);
	System.out.println("Item-based Recommende RMS Score is:" + rmsscore);

	// Recommender Evaluation -- IRStats Evaluator
	RecommenderIRStatsEvaluator irStatsEvaluator = new GenericRecommenderIRStatsEvaluator();
	IRStatistics stats = irStatsEvaluator.evaluate(recommenderBuilder,
			null, dataModel, null, 1,
			GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1);
	System.out.println("Precision Valus is : " + stats.getPrecision());
	System.out.println("Recall Value is : " + stats.getRecall());

}
 
开发者ID:melrefaey,项目名称:EEGoVid,代码行数:47,代码来源:EEGVideoEvaluator.java

示例7: runUserRecommender

import org.apache.mahout.cf.taste.impl.eval.GenericRecommenderIRStatsEvaluator; //导入依赖的package包/类
/****************************************** Running Demo for User-based Recommender ******************************************/
private static void runUserRecommender(DataModel dataModel, int n,
		double threshold, double training, double evaluation, int atValue,
		String similarity) throws TasteException {

	System.out.println("Start of Running a User-based Recommender, with:"
			+ similarity + " Similarity and training % = " + training
			+ " and evaluation % = " + evaluation);

	UserSimilarity userSimilarity = null;
	UserNeighborhood neighborhood;

	if (similarity.equals("pearson")) {
		userSimilarity = RecommParametersMeasures
				.getPearsonCorrelation(dataModel);

	} else if (similarity.equals("likelyhood")) {
		userSimilarity = RecommParametersMeasures
				.getLogLikelihoodSimilarity(dataModel);

	} else if (similarity.equals("tanimoto")) {
		userSimilarity = RecommParametersMeasures
				.getTanimotoCoefficientSimilarity(dataModel);
	} else if (similarity.equals("cityblock")) {
		userSimilarity = RecommParametersMeasures
				.getCityBlockSimilarity(dataModel);

	} else if (similarity.equals("ecludian")) {
		userSimilarity = RecommParametersMeasures
				.getEuclideanDistance(dataModel);
	} else if (similarity.equals("uncenteredcosine")) {
		userSimilarity = RecommParametersMeasures.getUncenteredCosine(dataModel);
	}

	if (n > 0) {
		System.out.println("N Size = " + n);
		neighborhood = RecommParametersMeasures.getNearestN(dataModel,
				userSimilarity, n);
	} else {
		System.out.println("Threshold value = " + threshold);

		neighborhood = RecommParametersMeasures.getThreshold(dataModel,
				userSimilarity, threshold);
	}

	RecommenderBuilder recommenderBuilder = EEGVideoRecommender.userBuilder(
			userSimilarity, neighborhood);
	recommenderBuilder.buildRecommender(dataModel).recommend(26, 1);

	// Recommender Evaluation -- Average Absolute Difference Evaluator
	RecommenderEvaluator absoluteDifferenceEvaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();
	double score = absoluteDifferenceEvaluator.evaluate(recommenderBuilder,
			null, dataModel, training, evaluation);
	System.out.println("The Average Score for this recommender is: "
			+ score);

	// Recommender Evaluation -- RMS Evaluator
	RecommenderEvaluator rmsEvaluator = new RMSRecommenderEvaluator();
	double rmsscore = rmsEvaluator.evaluate(recommenderBuilder, null,
			dataModel, training, evaluation);
	System.out.println("The RMS Score for Pearson and threshold is:"
			+ rmsscore);

	// Recommender Evaluation -- IRStats Evaluator
	RecommenderIRStatsEvaluator irStatsEvaluator = new GenericRecommenderIRStatsEvaluator();
	IRStatistics stats = irStatsEvaluator
			.evaluate(recommenderBuilder, null, dataModel, null, 1,
					GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD,
					evaluation);
	System.out.println("The Precision Valus is : " + stats.getPrecision());
	System.out.println("The Recall Value is : " + stats.getRecall());
	System.out.println("End of Run of user based recommender");
}
 
开发者ID:melrefaey,项目名称:EEGoVid,代码行数:74,代码来源:EEGVideoEvaluator.java


注:本文中的org.apache.mahout.cf.taste.impl.eval.GenericRecommenderIRStatsEvaluator类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。