当前位置: 首页>>代码示例>>Java>>正文


Java RecommenderBuilder类代码示例

本文整理汇总了Java中org.apache.mahout.cf.taste.eval.RecommenderBuilder的典型用法代码示例。如果您正苦于以下问题:Java RecommenderBuilder类的具体用法?Java RecommenderBuilder怎么用?Java RecommenderBuilder使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


RecommenderBuilder类属于org.apache.mahout.cf.taste.eval包,在下文中一共展示了RecommenderBuilder类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: main

import org.apache.mahout.cf.taste.eval.RecommenderBuilder; //导入依赖的package包/类
public static void main(String[] args) throws IOException, TasteException {
	RandomUtils.useTestSeed();
	
	final DataModel model = new FileDataModel(new File("data/intro.csv"));
	
	RecommenderIRStatsEvaluator evaluator = 
			new GenericRecommenderIRStatsEvaluator();
	
	RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
		
		public Recommender buildRecommender(DataModel dataModel) throws TasteException {
			UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
			UserNeighborhood neighborhood = 
					new NearestNUserNeighborhood(2, similarity, model);
			return new GenericUserBasedRecommender(model, neighborhood, similarity);
		}
	};
	
	IRStatistics stats = evaluator.evaluate(recommenderBuilder, null, model, null, 2, 
			GenericRecommenderIRStatsEvaluator.CHOOSE_THRESHOLD, 1.0);
	
	System.out.println(stats.getPrecision());
	System.out.println(stats.getRecall());
}
 
开发者ID:tensorchen,项目名称:rrs,代码行数:25,代码来源:RecommenderIRStatsEvaluatorTest.java

示例2: main

import org.apache.mahout.cf.taste.eval.RecommenderBuilder; //导入依赖的package包/类
public static void main(String[] args) throws TasteException, IOException {
    String file = "other/testdata/pv.csv";
    DataModel dataModel = RecommendFactory.buildDataModelNoPref(file);
    //基于UserCF城市街区距离(曼哈顿)算法
    RecommenderBuilder rb1 = RecommenderEvaluator.userCityBlock(dataModel);
    //基于ItemCF对数自然相似度算法
    RecommenderBuilder rb2 = RecommenderEvaluator.itemCityBlock(dataModel);

    LongPrimitiveIterator iter = dataModel.getUserIDs();
    while (iter.hasNext()) {
        long uid = iter.nextLong();
        System.out.print("userCityBlock  =>");
        result(uid, rb1, dataModel);
        System.out.print("itemLoglikelihood=>");
        result(uid, rb2, dataModel);
    }
}
 
开发者ID:Hope6537,项目名称:hope-tactical-equipment,代码行数:18,代码来源:RecommenderResult.java

示例3: testBuildDefaultRecommender

import org.apache.mahout.cf.taste.eval.RecommenderBuilder; //导入依赖的package包/类
@Test
public void testBuildDefaultRecommender() {

    RecommenderBuilder rb = new GenericRecommenderBuilder();
    FastByIDMap<PreferenceArray> userData = new FastByIDMap<PreferenceArray>();
    userData.put(1, new GenericUserPreferenceArray(Arrays.asList(new GenericPreference(1, 1, 1),
            new GenericPreference(1, 2, 1), new GenericPreference(1, 3, 1))));
    userData.put(2, new GenericUserPreferenceArray(Arrays.asList(new GenericPreference(2, 1, 1),
            new GenericPreference(2, 2, 1), new GenericPreference(2, 4, 1))));
    DataModel dm = new GenericDataModel(userData);

    Recommender rec = null;
    try {
        rec = rb.buildRecommender(dm);
    } catch (TasteException e) {
        e.printStackTrace();
    }
    assertTrue(rec instanceof RandomRecommender);
}
 
开发者ID:recommenders,项目名称:rival,代码行数:20,代码来源:GenericRecommenderBuilderTest.java

示例4: evaluateRecommender

import org.apache.mahout.cf.taste.eval.RecommenderBuilder; //导入依赖的package包/类
public static void evaluateRecommender() throws Exception{
	StringItemIdFileDataModel dataModel = loadFromFile("data/BX-Book-Ratings.csv",";");
	RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();
	RecommenderBuilder builder = new BookRecommender();
	double result = evaluator.evaluate(builder, null, dataModel, 0.9, 1.0);
	System.out.println(result);
}
 
开发者ID:PacktPublishing,项目名称:Machine-Learning-End-to-Endguide-for-Java-developers,代码行数:8,代码来源:BookRecommender.java

示例5: main

import org.apache.mahout.cf.taste.eval.RecommenderBuilder; //导入依赖的package包/类
public static void main(String[] args) throws IOException, TasteException {
	RandomUtils.useTestSeed();
	
	final DataModel model = new FileDataModel(new File("data/ua.base"));
	
	RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();
	
	RecommenderBuilder builder = new RecommenderBuilder() {
		
		public Recommender buildRecommender(DataModel dataModel) throws TasteException {
			UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
			UserNeighborhood neighborhood = 
					new NearestNUserNeighborhood(2, similarity, model);
			return new GenericUserBasedRecommender(model, neighborhood, similarity);
		}
	};
	
	double score = evaluator.evaluate(builder, null, model, 0.7, 1.0);
	
	System.out.println(score);
}
 
开发者ID:tensorchen,项目名称:rrs,代码行数:22,代码来源:RecommenderEvaluatorTest.java

示例6: evaluate

import org.apache.mahout.cf.taste.eval.RecommenderBuilder; //导入依赖的package包/类
public static void evaluate(String ratingsFile)
    throws TasteException, IOException {
  DataModel model = new FileDataModel(new File(ratingsFile));
  RecommenderEvaluator evaluator =
      new AverageAbsoluteDifferenceRecommenderEvaluator();
  RecommenderBuilder recommenderBuilder = new MyRecommendBuilder();
  evaluator.evaluate(
      recommenderBuilder,
      null,
      model,
      0.95,
      0.05
  );
}
 
开发者ID:Hanmourang,项目名称:hiped2,代码行数:15,代码来源:MovieUserEvaluator.java

示例7: main

import org.apache.mahout.cf.taste.eval.RecommenderBuilder; //导入依赖的package包/类
public static void main(String[] args) throws TasteException, IOException {
    String file = "other/testdata/pv.csv";
    DataModel dataModel = RecommendFactory.buildDataModelNoPref(file);
    RecommenderBuilder rb1 = RecommenderEvaluator.userCityBlock(dataModel);
    RecommenderBuilder rb2 = RecommenderEvaluator.itemLoglikelihood(dataModel);

    LongPrimitiveIterator iter = dataModel.getUserIDs();
    while (iter.hasNext()) {
        long uid = iter.nextLong();
        System.out.print("userCityBlock    =>");
        filterOutdate(uid, rb1, dataModel);
        System.out.print("itemLoglikelihood=>");
        filterOutdate(uid, rb2, dataModel);
    }
}
 
开发者ID:Hope6537,项目名称:hope-tactical-equipment,代码行数:16,代码来源:RecommenderFilterOutdateResult.java

示例8: userCF

import org.apache.mahout.cf.taste.eval.RecommenderBuilder; //导入依赖的package包/类
public static void userCF(DataModel dataModel) throws TasteException {
    UserSimilarity userSimilarity = RecommendFactory.userSimilarity(RecommendFactory.SIMILARITY.CITYBLOCK, dataModel);
    UserNeighborhood userNeighborhood = RecommendFactory.userNeighborhood(RecommendFactory.NEIGHBORHOOD.NEAREST, userSimilarity, dataModel, NEIGHBORHOOD_NUM);
    RecommenderBuilder recommenderBuilder = RecommendFactory.userRecommender(userSimilarity, userNeighborhood, true);

    RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
    RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);

    LongPrimitiveIterator iter = dataModel.getUserIDs();
    while (iter.hasNext()) {
        long uid = iter.nextLong();
        List<RecommendedItem> list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM);
        RecommendFactory.showItems(uid, list, true);
    }
}
 
开发者ID:Hope6537,项目名称:hope-tactical-equipment,代码行数:16,代码来源:RecommenderTest.java

示例9: itemCF

import org.apache.mahout.cf.taste.eval.RecommenderBuilder; //导入依赖的package包/类
public static void itemCF(DataModel dataModel) throws TasteException {
    ItemSimilarity itemSimilarity = RecommendFactory.itemSimilarity(RecommendFactory.SIMILARITY.CITYBLOCK, dataModel);
    RecommenderBuilder recommenderBuilder = RecommendFactory.itemRecommender(itemSimilarity, true);
    RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
    RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
    LongPrimitiveIterator iter = dataModel.getUserIDs();
    while (iter.hasNext()) {
        long uid = iter.nextLong();
        List<RecommendedItem> list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM);
        RecommendFactory.showItems(uid, list, true);
    }
}
 
开发者ID:Hope6537,项目名称:hope-tactical-equipment,代码行数:13,代码来源:RecommenderTest.java

示例10: slopeOne

import org.apache.mahout.cf.taste.eval.RecommenderBuilder; //导入依赖的package包/类
public static void slopeOne(DataModel dataModel) throws TasteException {
    RecommenderBuilder recommenderBuilder = RecommendFactory.slopeOneRecommender();

    RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
    RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);

    LongPrimitiveIterator iter = dataModel.getUserIDs();
    while (iter.hasNext()) {
        long uid = iter.nextLong();
        List<RecommendedItem> list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM);
        RecommendFactory.showItems(uid, list, true);
    }
}
 
开发者ID:Hope6537,项目名称:hope-tactical-equipment,代码行数:14,代码来源:RecommenderTest.java

示例11: itemKNN

import org.apache.mahout.cf.taste.eval.RecommenderBuilder; //导入依赖的package包/类
public static void itemKNN(DataModel dataModel) throws TasteException {
    ItemSimilarity itemSimilarity = RecommendFactory.itemSimilarity(RecommendFactory.SIMILARITY.EUCLIDEAN, dataModel);
    RecommenderBuilder recommenderBuilder = RecommendFactory.itemKNNRecommender(itemSimilarity, new NonNegativeQuadraticOptimizer(), 10);

    RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
    RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);

    LongPrimitiveIterator iter = dataModel.getUserIDs();
    while (iter.hasNext()) {
        long uid = iter.nextLong();
        List<RecommendedItem> list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM);
        RecommendFactory.showItems(uid, list, true);
    }
}
 
开发者ID:Hope6537,项目名称:hope-tactical-equipment,代码行数:15,代码来源:RecommenderTest.java

示例12: svd

import org.apache.mahout.cf.taste.eval.RecommenderBuilder; //导入依赖的package包/类
public static void svd(DataModel dataModel) throws TasteException {
    RecommenderBuilder recommenderBuilder = RecommendFactory.svdRecommender(new ALSWRFactorizer(dataModel, 10, 0.05, 10));

    RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
    RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);

    LongPrimitiveIterator iter = dataModel.getUserIDs();
    while (iter.hasNext()) {
        long uid = iter.nextLong();
        List<RecommendedItem> list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM);
        RecommendFactory.showItems(uid, list, true);
    }
}
 
开发者ID:Hope6537,项目名称:hope-tactical-equipment,代码行数:14,代码来源:RecommenderTest.java

示例13: treeCluster

import org.apache.mahout.cf.taste.eval.RecommenderBuilder; //导入依赖的package包/类
public static void treeCluster(DataModel dataModel) throws TasteException {
    UserSimilarity userSimilarity = RecommendFactory.userSimilarity(RecommendFactory.SIMILARITY.LOGLIKELIHOOD, dataModel);
    ClusterSimilarity clusterSimilarity = RecommendFactory.clusterSimilarity(RecommendFactory.SIMILARITY.FARTHEST_NEIGHBOR_CLUSTER, userSimilarity);
    RecommenderBuilder recommenderBuilder = RecommendFactory.treeClusterRecommender(clusterSimilarity, 10);

    RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
    RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);

    LongPrimitiveIterator iter = dataModel.getUserIDs();
    while (iter.hasNext()) {
        long uid = iter.nextLong();
        List<RecommendedItem> list = recommenderBuilder.buildRecommender(dataModel).recommend(uid, RECOMMENDER_NUM);
        RecommendFactory.showItems(uid, list, true);
    }
}
 
开发者ID:Hope6537,项目名称:hope-tactical-equipment,代码行数:16,代码来源:RecommenderTest.java

示例14: userLoglikelihood

import org.apache.mahout.cf.taste.eval.RecommenderBuilder; //导入依赖的package包/类
/**
 * UserCF1
 * 1、首先我们需要传递数据模型,然后去构建用户的相似度
 * 2、找到用户的近邻
 * 3、构建推荐的Builder
 * 4、对结果进行评分
 * [其他的基本上也是一样]
 */
public static RecommenderBuilder userLoglikelihood(DataModel dataModel) throws TasteException, IOException {
    System.out.println("userLoglikelihood");
    UserSimilarity userSimilarity = RecommendFactory.userSimilarity(RecommendFactory.SIMILARITY.LOGLIKELIHOOD, dataModel);
    UserNeighborhood userNeighborhood = RecommendFactory.userNeighborhood(RecommendFactory.NEIGHBORHOOD.NEAREST, userSimilarity, dataModel, NEIGHBORHOOD_NUM);
    RecommenderBuilder recommenderBuilder = RecommendFactory.userRecommender(userSimilarity, userNeighborhood, false);

    RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
    RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
    return recommenderBuilder;
}
 
开发者ID:Hope6537,项目名称:hope-tactical-equipment,代码行数:19,代码来源:RecommenderEvaluator.java

示例15: userCityBlock

import org.apache.mahout.cf.taste.eval.RecommenderBuilder; //导入依赖的package包/类
/**
 * Recommender IR Evaluator: [Precision:0.919580419580419,Recall:0.4371584699453552]
 */
public static RecommenderBuilder userCityBlock(DataModel dataModel) throws TasteException, IOException {
    System.out.println("userCityBlock");
    UserSimilarity userSimilarity = RecommendFactory.userSimilarity(RecommendFactory.SIMILARITY.CITYBLOCK, dataModel);
    UserNeighborhood userNeighborhood = RecommendFactory.userNeighborhood(RecommendFactory.NEIGHBORHOOD.NEAREST, userSimilarity, dataModel, NEIGHBORHOOD_NUM);
    RecommenderBuilder recommenderBuilder = RecommendFactory.userRecommender(userSimilarity, userNeighborhood, false);

    RecommendFactory.evaluate(RecommendFactory.EVALUATOR.AVERAGE_ABSOLUTE_DIFFERENCE, recommenderBuilder, null, dataModel, 0.7);
    RecommendFactory.statsEvaluator(recommenderBuilder, null, dataModel, 2);
    return recommenderBuilder;
}
 
开发者ID:Hope6537,项目名称:hope-tactical-equipment,代码行数:14,代码来源:RecommenderEvaluator.java


注:本文中的org.apache.mahout.cf.taste.eval.RecommenderBuilder类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。