本文整理汇总了Java中org.apache.kafka.connect.data.Field类的典型用法代码示例。如果您正苦于以下问题:Java Field类的具体用法?Java Field怎么用?Java Field使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
Field类属于org.apache.kafka.connect.data包,在下文中一共展示了Field类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: applyWithSchema
import org.apache.kafka.connect.data.Field; //导入依赖的package包/类
private R applyWithSchema(R record) {
Schema valueSchema = operatingSchema(record);
Schema updatedSchema = getOrBuildSchema(valueSchema);
// Whole-record casting
if (wholeValueCastType != null)
return newRecord(record, updatedSchema, castValueToType(operatingValue(record), wholeValueCastType));
// Casting within a struct
final Struct value = requireStruct(operatingValue(record), PURPOSE);
final Struct updatedValue = new Struct(updatedSchema);
for (Field field : value.schema().fields()) {
final Object origFieldValue = value.get(field);
final Schema.Type targetType = casts.get(field.name());
final Object newFieldValue = targetType != null ? castValueToType(origFieldValue, targetType) : origFieldValue;
updatedValue.put(updatedSchema.field(field.name()), newFieldValue);
}
return newRecord(record, updatedSchema, updatedValue);
}
示例2: buildWithSchema
import org.apache.kafka.connect.data.Field; //导入依赖的package包/类
private void buildWithSchema(Struct record, String fieldNamePrefix, Struct newRecord) {
for (Field field : record.schema().fields()) {
final String fieldName = fieldName(fieldNamePrefix, field.name());
switch (field.schema().type()) {
case INT8:
case INT16:
case INT32:
case INT64:
case FLOAT32:
case FLOAT64:
case BOOLEAN:
case STRING:
case BYTES:
newRecord.put(fieldName, record.get(field));
break;
case STRUCT:
buildWithSchema(record.getStruct(field.name()), fieldName, newRecord);
break;
default:
throw new DataException("Flatten transformation does not support " + field.schema().type()
+ " for record without schemas (for field " + fieldName + ").");
}
}
}
示例3: makeUpdatedSchema
import org.apache.kafka.connect.data.Field; //导入依赖的package包/类
private Schema makeUpdatedSchema(Schema schema) {
final SchemaBuilder builder = SchemaUtil.copySchemaBasics(schema, SchemaBuilder.struct());
for (Field field : schema.fields()) {
builder.field(field.name(), field.schema());
}
if (topicField != null) {
builder.field(topicField.name, topicField.optional ? Schema.OPTIONAL_STRING_SCHEMA : Schema.STRING_SCHEMA);
}
if (partitionField != null) {
builder.field(partitionField.name, partitionField.optional ? Schema.OPTIONAL_INT32_SCHEMA : Schema.INT32_SCHEMA);
}
if (offsetField != null) {
builder.field(offsetField.name, offsetField.optional ? Schema.OPTIONAL_INT64_SCHEMA : Schema.INT64_SCHEMA);
}
if (timestampField != null) {
builder.field(timestampField.name, timestampField.optional ? OPTIONAL_TIMESTAMP_SCHEMA : Timestamp.SCHEMA);
}
if (staticField != null) {
builder.field(staticField.name, staticField.optional ? Schema.OPTIONAL_STRING_SCHEMA : Schema.STRING_SCHEMA);
}
return builder.build();
}
示例4: applyWithSchema
import org.apache.kafka.connect.data.Field; //导入依赖的package包/类
private R applyWithSchema(R record) {
final Struct value = requireStruct(operatingValue(record), PURPOSE);
Schema updatedSchema = schemaUpdateCache.get(value.schema());
if (updatedSchema == null) {
updatedSchema = makeUpdatedSchema(value.schema());
schemaUpdateCache.put(value.schema(), updatedSchema);
}
final Struct updatedValue = new Struct(updatedSchema);
for (Field field : updatedSchema.fields()) {
final Object fieldValue = value.get(reverseRenamed(field.name()));
updatedValue.put(field.name(), fieldValue);
}
return newRecord(record, updatedSchema, updatedValue);
}
示例5: convert
import org.apache.kafka.connect.data.Field; //导入依赖的package包/类
@Override
public Object convert(Schema schema, JsonNode value) {
if (!value.isObject())
throw new DataException("Structs should be encoded as JSON objects, but found " + value.getNodeType());
// We only have ISchema here but need Schema, so we need to materialize the actual schema. Using ISchema
// avoids having to materialize the schema for non-Struct types but it cannot be avoided for Structs since
// they require a schema to be provided at construction. However, the schema is only a SchemaBuilder during
// translation of schemas to JSON; during the more common translation of data to JSON, the call to schema.schema()
// just returns the schema Object and has no overhead.
Struct result = new Struct(schema.schema());
for (Field field : schema.fields())
result.put(field, convertToConnect(field.schema(), value.get(field.name())));
return result;
}
示例6: getRowData
import org.apache.kafka.connect.data.Field; //导入依赖的package包/类
@Override
public List<List<String>> getRowData() {
List<List<String>> rows = new ArrayList<>();
if (Schema.Type.STRUCT != this.schema.type()) {
return rows;
}
for (Field field : this.schema.fields()) {
rows.add(
ImmutableList.of(
field.name(),
type(field.schema()),
String.format("%s", field.schema().isOptional()),
null != field.schema().defaultValue() ? field.schema().defaultValue().toString() : "",
!Strings.isNullOrEmpty(field.schema().doc()) ? field.schema().doc() : ""
)
);
}
return rows;
}
示例7: serialize
import org.apache.kafka.connect.data.Field; //导入依赖的package包/类
@Override
public void serialize(Struct struct, JsonGenerator jsonGenerator, SerializerProvider serializerProvider) throws IOException, JsonProcessingException {
struct.validate();
Storage result = new Storage();
result.schema = struct.schema();
result.fieldValues = new ArrayList<>();
for (Field field : struct.schema().fields()) {
log.trace("serialize() - Processing field '{}'", field.name());
FieldValue fieldValue = new FieldValue();
fieldValue.name = field.name();
fieldValue.schema = field.schema();
fieldValue.value(struct.get(field));
result.fieldValues.add(fieldValue);
}
jsonGenerator.writeObject(result);
}
示例8: Storage
import org.apache.kafka.connect.data.Field; //导入依赖的package包/类
Storage(Schema schema) {
this.name = schema.name();
this.doc = schema.doc();
this.type = schema.type();
this.defaultValue = schema.defaultValue();
this.version = schema.version();
this.parameters = schema.parameters();
this.isOptional = schema.isOptional();
if (Schema.Type.MAP == this.type) {
this.keySchema = schema.keySchema();
this.valueSchema = schema.valueSchema();
} else if (Schema.Type.ARRAY == this.type) {
this.keySchema = null;
this.valueSchema = schema.valueSchema();
} else if (Schema.Type.STRUCT == this.type) {
this.fieldSchemas = new LinkedHashMap<>();
for (Field field : schema.fields()) {
this.fieldSchemas.put(field.name(), field.schema());
}
}
}
示例9: getFieldIndexByName
import org.apache.kafka.connect.data.Field; //导入依赖的package包/类
public static int getFieldIndexByName(final Schema schema, final String fieldName) {
if (schema.fields() == null) {
return -1;
}
for (int i = 0; i < schema.fields().size(); i++) {
Field field = schema.fields().get(i);
int dotIndex = field.name().indexOf('.');
if (dotIndex == -1) {
if (field.name().equals(fieldName)) {
return i;
}
} else {
if (dotIndex < fieldName.length()) {
String
fieldNameWithDot =
fieldName.substring(0, dotIndex) + "." + fieldName.substring(dotIndex + 1);
if (field.name().equals(fieldNameWithDot)) {
return i;
}
}
}
}
return -1;
}
示例10: handleStruct
import org.apache.kafka.connect.data.Field; //导入依赖的package包/类
void handleStruct(Event event) {
final Struct input = (Struct) event.event;
List<Field> fields = input.schema().fields();
final Map result = new LinkedHashMap(fields.size());
for (Field field : fields) {
Object key = field.name();
Object value = input.get(field);
if (null == value) {
continue;
}
if (!event.setValue(key, value)) {
result.put(key, value);
}
}
event.event = result.isEmpty() ? null : result;
}
示例11: valueSchema
import org.apache.kafka.connect.data.Field; //导入依赖的package包/类
public static Schema valueSchema(SObjectDescriptor descriptor) {
String name = String.format("%s.%s", SObjectHelper.class.getPackage().getName(), descriptor.name());
SchemaBuilder builder = SchemaBuilder.struct();
builder.name(name);
for (SObjectDescriptor.Field field : descriptor.fields()) {
if (isTextArea(field)) {
continue;
}
Schema schema = schema(field);
builder.field(field.name(), schema);
}
builder.field(FIELD_OBJECT_TYPE, Schema.OPTIONAL_STRING_SCHEMA);
builder.field(FIELD_EVENT_TYPE, Schema.OPTIONAL_STRING_SCHEMA);
return builder.build();
}
示例12: convertStruct
import org.apache.kafka.connect.data.Field; //导入依赖的package包/类
public void convertStruct(JsonNode sObjectNode, Schema schema, Struct struct) {
for (Field field : schema.fields()) {
String fieldName = field.name();
JsonNode valueNode = sObjectNode.findValue(fieldName);
final Object value;
if (ADDRESS_SCHEMA_NAME.equals(field.schema().name())) {
Struct address = new Struct(field.schema());
for (Field addressField : field.schema().fields()) {
JsonNode fieldValueNode = valueNode.findValue(addressField.name());
Object fieldValue = PARSER.parseJsonNode(addressField.schema(), fieldValueNode);
address.put(addressField, fieldValue);
}
value = address;
} else {
value = PARSER.parseJsonNode(field.schema(), valueNode);
}
struct.put(field, value);
}
}
示例13: convertMap
import org.apache.kafka.connect.data.Field; //导入依赖的package包/类
private com.google.cloud.bigquery.Field.Builder convertMap(Schema kafkaConnectSchema,
String fieldName) {
Schema keySchema = kafkaConnectSchema.keySchema();
Schema valueSchema = kafkaConnectSchema.valueSchema();
com.google.cloud.bigquery.Field.Builder keyFieldBuilder =
convertField(keySchema, MAP_KEY_FIELD_NAME);
com.google.cloud.bigquery.Field.Builder valueFieldBuilder =
convertField(valueSchema, MAP_VALUE_FIELD_NAME);
com.google.cloud.bigquery.Field keyField = keyFieldBuilder.build();
com.google.cloud.bigquery.Field valueField = valueFieldBuilder.build();
com.google.cloud.bigquery.Field.Type bigQueryMapEntryType =
com.google.cloud.bigquery.Field.Type.record(keyField, valueField);
com.google.cloud.bigquery.Field.Builder bigQueryRecordBuilder =
com.google.cloud.bigquery.Field.newBuilder(fieldName, bigQueryMapEntryType);
return bigQueryRecordBuilder.setMode(com.google.cloud.bigquery.Field.Mode.REPEATED);
}
示例14: convertStruct
import org.apache.kafka.connect.data.Field; //导入依赖的package包/类
private Map<String, Object> convertStruct(Object kafkaConnectObject,
Schema kafkaConnectSchema) {
Map<String, Object> bigQueryRecord = new HashMap<>();
List<Field> kafkaConnectSchemaFields = kafkaConnectSchema.fields();
Struct kafkaConnectStruct = (Struct) kafkaConnectObject;
for (Field kafkaConnectField : kafkaConnectSchemaFields) {
Object bigQueryObject = convertObject(
kafkaConnectStruct.get(kafkaConnectField.name()),
kafkaConnectField.schema()
);
if (bigQueryObject != null) {
bigQueryRecord.put(kafkaConnectField.name(), bigQueryObject);
}
}
return bigQueryRecord;
}
示例15: KsqlStructuredDataOutputNode
import org.apache.kafka.connect.data.Field; //导入依赖的package包/类
@JsonCreator
public KsqlStructuredDataOutputNode(@JsonProperty("id") final PlanNodeId id,
@JsonProperty("source") final PlanNode source,
@JsonProperty("schema") final Schema schema,
@JsonProperty("timestamp") final Field timestampField,
@JsonProperty("key") final Field keyField,
@JsonProperty("ksqlTopic") final KsqlTopic ksqlTopic,
@JsonProperty("topicName") final String topicName,
@JsonProperty("outputProperties") final Map<String, Object>
outputProperties,
@JsonProperty("limit") final Optional<Integer> limit) {
super(id, source, schema, limit);
this.kafkaTopicName = topicName;
this.keyField = keyField;
this.timestampField = timestampField;
this.ksqlTopic = ksqlTopic;
this.outputProperties = outputProperties;
}