本文整理汇总了Java中org.apache.hadoop.yarn.sls.conf.SLSConfiguration类的典型用法代码示例。如果您正苦于以下问题:Java SLSConfiguration类的具体用法?Java SLSConfiguration怎么用?Java SLSConfiguration使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
SLSConfiguration类属于org.apache.hadoop.yarn.sls.conf包,在下文中一共展示了SLSConfiguration类的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: startAM
import org.apache.hadoop.yarn.sls.conf.SLSConfiguration; //导入依赖的package包/类
@SuppressWarnings("unchecked")
private void startAM() throws YarnException, IOException {
// application/container configuration
int heartbeatInterval = conf.getInt(
SLSConfiguration.AM_HEARTBEAT_INTERVAL_MS,
SLSConfiguration.AM_HEARTBEAT_INTERVAL_MS_DEFAULT);
int containerMemoryMB = conf.getInt(SLSConfiguration.CONTAINER_MEMORY_MB,
SLSConfiguration.CONTAINER_MEMORY_MB_DEFAULT);
int containerVCores = conf.getInt(SLSConfiguration.CONTAINER_VCORES,
SLSConfiguration.CONTAINER_VCORES_DEFAULT);
Resource containerResource =
BuilderUtils.newResource(containerMemoryMB, containerVCores);
// application workload
if (isSLS) {
startAMFromSLSTraces(containerResource, heartbeatInterval);
} else {
startAMFromRumenTraces(containerResource, heartbeatInterval);
}
numAMs = amMap.size();
remainingApps = numAMs;
}
示例2: initMetricsCSVOutput
import org.apache.hadoop.yarn.sls.conf.SLSConfiguration; //导入依赖的package包/类
private void initMetricsCSVOutput() {
int timeIntervalMS = conf.getInt(
SLSConfiguration.METRICS_RECORD_INTERVAL_MS,
SLSConfiguration.METRICS_RECORD_INTERVAL_MS_DEFAULT);
File dir = new File(metricsOutputDir + "/metrics");
if(! dir.exists()
&& ! dir.mkdirs()) {
LOG.error("Cannot create directory " + dir.getAbsoluteFile());
}
final CsvReporter reporter = CsvReporter.forRegistry(metrics)
.formatFor(Locale.US)
.convertRatesTo(TimeUnit.SECONDS)
.convertDurationsTo(TimeUnit.MILLISECONDS)
.build(new File(metricsOutputDir + "/metrics"));
reporter.start(timeIntervalMS, TimeUnit.MILLISECONDS);
}
示例3: startRM
import org.apache.hadoop.yarn.sls.conf.SLSConfiguration; //导入依赖的package包/类
private void startRM() throws IOException, ClassNotFoundException {
Configuration rmConf = new YarnConfiguration();
String schedulerClass = rmConf.get(YarnConfiguration.RM_SCHEDULER);
// For CapacityScheduler we use a sub-classing instead of wrapping
// to allow scheduler-specific invocations from monitors to work
// this can be used for other schedulers as well if we care to
// exercise/track behaviors that are not common to the scheduler api
if(Class.forName(schedulerClass) == CapacityScheduler.class) {
rmConf.set(YarnConfiguration.RM_SCHEDULER,
SLSCapacityScheduler.class.getName());
} else {
rmConf.set(YarnConfiguration.RM_SCHEDULER,
ResourceSchedulerWrapper.class.getName());
rmConf.set(SLSConfiguration.RM_SCHEDULER, schedulerClass);
}
rmConf.set(SLSConfiguration.METRICS_OUTPUT_DIR, metricsOutputDir);
rm = new ResourceManager();
rm.init(rmConf);
rm.start();
}
示例4: setup
import org.apache.hadoop.yarn.sls.conf.SLSConfiguration; //导入依赖的package包/类
@Before
public void setup() throws IOException {
conf = new YarnConfiguration();
conf.set(YarnConfiguration.RM_SCHEDULER,
"org.apache.hadoop.yarn.sls.scheduler.ResourceSchedulerWrapper");
conf.set(SLSConfiguration.RM_SCHEDULER,
"org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler");
conf.setBoolean(SLSConfiguration.METRICS_SWITCH, false);
RMStorageFactory.setConfiguration(conf);
YarnAPIStorageFactory.setConfiguration(conf);
DBUtility.InitializeDB();
rm = new ResourceManager();
rm.init(conf);
rm.start();
}
示例5: SLSRunner
import org.apache.hadoop.yarn.sls.conf.SLSConfiguration; //导入依赖的package包/类
public SLSRunner(boolean isSLS, String inputTraces[], String nodeFile,
String outputDir, Set<String> trackedApps,
boolean printsimulation)
throws IOException, ClassNotFoundException {
this.isSLS = isSLS;
this.inputTraces = inputTraces.clone();
this.nodeFile = nodeFile;
this.trackedApps = trackedApps;
this.printSimulation = printsimulation;
metricsOutputDir = outputDir;
nmMap = new HashMap<NodeId, NMSimulator>();
queueAppNumMap = new HashMap<String, Integer>();
amMap = new HashMap<String, AMSimulator>();
amClassMap = new HashMap<String, Class>();
// runner configuration
conf = new Configuration(false);
conf.addResource("sls-runner.xml");
// runner
int poolSize = conf.getInt(SLSConfiguration.RUNNER_POOL_SIZE,
SLSConfiguration.RUNNER_POOL_SIZE_DEFAULT);
SLSRunner.runner.setQueueSize(poolSize);
// <AMType, Class> map
for (Map.Entry e : conf) {
String key = e.getKey().toString();
if (key.startsWith(SLSConfiguration.AM_TYPE)) {
String amType = key.substring(SLSConfiguration.AM_TYPE.length());
amClassMap.put(amType, Class.forName(conf.get(key)));
}
}
}
示例6: startRM
import org.apache.hadoop.yarn.sls.conf.SLSConfiguration; //导入依赖的package包/类
private void startRM() throws IOException, ClassNotFoundException {
Configuration rmConf = new YarnConfiguration();
String schedulerClass = rmConf.get(YarnConfiguration.RM_SCHEDULER);
rmConf.set(SLSConfiguration.RM_SCHEDULER, schedulerClass);
rmConf.set(YarnConfiguration.RM_SCHEDULER,
ResourceSchedulerWrapper.class.getName());
rmConf.set(SLSConfiguration.METRICS_OUTPUT_DIR, metricsOutputDir);
rm = new ResourceManager();
rm.init(rmConf);
rm.start();
}
示例7: setup
import org.apache.hadoop.yarn.sls.conf.SLSConfiguration; //导入依赖的package包/类
@Before
public void setup() {
conf = new YarnConfiguration();
conf.set(YarnConfiguration.RM_SCHEDULER,
"org.apache.hadoop.yarn.sls.scheduler.ResourceSchedulerWrapper");
conf.set(SLSConfiguration.RM_SCHEDULER,
"org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler");
conf.setBoolean(SLSConfiguration.METRICS_SWITCH, false);
rm = new ResourceManager();
rm.init(conf);
rm.start();
}
示例8: startRM
import org.apache.hadoop.yarn.sls.conf.SLSConfiguration; //导入依赖的package包/类
private void startRM() throws IOException, ClassNotFoundException {
Configuration rmConf = new YarnConfiguration();
String schedulerClass = rmConf.get(YarnConfiguration.RM_SCHEDULER);
rmConf.set(SLSConfiguration.RM_SCHEDULER, schedulerClass);
rmConf.set(YarnConfiguration.RM_SCHEDULER,
ResourceSchedulerWrapper.class.getName());
rmConf.set(SLSConfiguration.METRICS_OUTPUT_DIR, metricsOutputDir);
RMStorageFactory.setConfiguration(rmConf);
YarnAPIStorageFactory.setConfiguration(rmConf);
DBUtility.InitializeDB();
rm = new ResourceManager();
rm.init(rmConf);
rm.start();
}
示例9: setup
import org.apache.hadoop.yarn.sls.conf.SLSConfiguration; //导入依赖的package包/类
@Before
public void setup() throws IOException {
conf = new YarnConfiguration();
conf.set(YarnConfiguration.RM_SCHEDULER,
"org.apache.hadoop.yarn.sls.scheduler.ResourceSchedulerWrapper");
conf.set(SLSConfiguration.RM_SCHEDULER,
"org.apache.hadoop.yarn.server.resourcemanager.scheduler.fair.FairScheduler");
conf.setBoolean(SLSConfiguration.METRICS_SWITCH, false);
RMStorageFactory.setConfiguration(conf);
YarnAPIStorageFactory.setConfiguration(conf);
DBUtility.InitializeDB();
rm = new ResourceManager();
rm.init(conf);
rm.start();
}
示例10: initMetrics
import org.apache.hadoop.yarn.sls.conf.SLSConfiguration; //导入依赖的package包/类
@SuppressWarnings("unchecked")
private void initMetrics() throws Exception {
metrics = new MetricRegistry();
// configuration
metricsOutputDir = conf.get(SLSConfiguration.METRICS_OUTPUT_DIR);
int metricsWebAddressPort = conf.getInt(
SLSConfiguration.METRICS_WEB_ADDRESS_PORT,
SLSConfiguration.METRICS_WEB_ADDRESS_PORT_DEFAULT);
// create SchedulerMetrics for current scheduler
String schedulerMetricsType = conf.get(scheduler.getClass().getName());
Class schedulerMetricsClass = schedulerMetricsType == null?
defaultSchedulerMetricsMap.get(scheduler.getClass()) :
Class.forName(schedulerMetricsType);
schedulerMetrics = (SchedulerMetrics)ReflectionUtils
.newInstance(schedulerMetricsClass, new Configuration());
schedulerMetrics.init(scheduler, metrics);
// register various metrics
registerJvmMetrics();
registerClusterResourceMetrics();
registerContainerAppNumMetrics();
registerSchedulerMetrics();
// .csv output
initMetricsCSVOutput();
// start web app to provide real-time tracking
web = new SLSWebApp(this, metricsWebAddressPort);
web.start();
// a thread to update histogram timer
pool = new ScheduledThreadPoolExecutor(2);
pool.scheduleAtFixedRate(new HistogramsRunnable(), 0, 1000,
TimeUnit.MILLISECONDS);
// a thread to output metrics for real-tiem tracking
pool.scheduleAtFixedRate(new MetricsLogRunnable(), 0, 1000,
TimeUnit.MILLISECONDS);
// application running information
jobRuntimeLogBW = new BufferedWriter(
new FileWriter(metricsOutputDir + "/jobruntime.csv"));
jobRuntimeLogBW.write("JobID,real_start_time,real_end_time," +
"simulate_start_time,simulate_end_time" + EOL);
jobRuntimeLogBW.flush();
}
示例11: initMetrics
import org.apache.hadoop.yarn.sls.conf.SLSConfiguration; //导入依赖的package包/类
@SuppressWarnings("unchecked")
private void initMetrics() throws Exception {
metrics = new MetricRegistry();
// configuration
metricsOutputDir = conf.get(SLSConfiguration.METRICS_OUTPUT_DIR);
int metricsWebAddressPort = conf.getInt(
SLSConfiguration.METRICS_WEB_ADDRESS_PORT,
SLSConfiguration.METRICS_WEB_ADDRESS_PORT_DEFAULT);
// create SchedulerMetrics for current scheduler
String schedulerMetricsType = conf.get(scheduler.getClass().getName());
Class schedulerMetricsClass = schedulerMetricsType == null?
defaultSchedulerMetricsMap.get(scheduler.getClass()) :
Class.forName(schedulerMetricsType);
schedulerMetrics = (SchedulerMetrics)ReflectionUtils
.newInstance(schedulerMetricsClass, new Configuration());
schedulerMetrics.init(scheduler, metrics);
// register various metrics
registerJvmMetrics();
registerClusterResourceMetrics();
registerContainerAppNumMetrics();
registerSchedulerMetrics();
// .csv output
initMetricsCSVOutput();
// start web app to provide real-time tracking
web = new SLSWebApp(this, metricsWebAddressPort);
web.start();
// a thread to update histogram timer
pool = new ScheduledThreadPoolExecutor(2);
pool.scheduleAtFixedRate(new HistogramsRunnable(), 0, 1000,
TimeUnit.MILLISECONDS);
// a thread to output metrics for real-tiem tracking
pool.scheduleAtFixedRate(new MetricsLogRunnable(), 0, 1000,
TimeUnit.MILLISECONDS);
// application running information
jobRuntimeLogBW =
new BufferedWriter(new OutputStreamWriter(new FileOutputStream(
metricsOutputDir + "/jobruntime.csv"), "UTF-8"));
jobRuntimeLogBW.write("JobID,real_start_time,real_end_time," +
"simulate_start_time,simulate_end_time" + EOL);
jobRuntimeLogBW.flush();
}
示例12: initMetrics
import org.apache.hadoop.yarn.sls.conf.SLSConfiguration; //导入依赖的package包/类
@SuppressWarnings({ "unchecked", "rawtypes" })
private void initMetrics() throws Exception {
metrics = new MetricRegistry();
// configuration
metricsOutputDir = conf.get(SLSConfiguration.METRICS_OUTPUT_DIR);
int metricsWebAddressPort = conf.getInt(
SLSConfiguration.METRICS_WEB_ADDRESS_PORT,
SLSConfiguration.METRICS_WEB_ADDRESS_PORT_DEFAULT);
// create SchedulerMetrics for current scheduler
String schedulerMetricsType = conf.get(CapacityScheduler.class.getName());
Class schedulerMetricsClass = schedulerMetricsType == null?
defaultSchedulerMetricsMap.get(CapacityScheduler.class) :
Class.forName(schedulerMetricsType);
schedulerMetrics = (SchedulerMetrics)ReflectionUtils
.newInstance(schedulerMetricsClass, new Configuration());
schedulerMetrics.init(this, metrics);
// register various metrics
registerJvmMetrics();
registerClusterResourceMetrics();
registerContainerAppNumMetrics();
registerSchedulerMetrics();
// .csv output
initMetricsCSVOutput();
// start web app to provide real-time tracking
web = new SLSWebApp(this, metricsWebAddressPort);
web.start();
// a thread to update histogram timer
pool = new ScheduledThreadPoolExecutor(2);
pool.scheduleAtFixedRate(new HistogramsRunnable(), 0, 1000,
TimeUnit.MILLISECONDS);
// a thread to output metrics for real-tiem tracking
pool.scheduleAtFixedRate(new MetricsLogRunnable(), 0, 1000,
TimeUnit.MILLISECONDS);
// application running information
jobRuntimeLogBW =
new BufferedWriter(new OutputStreamWriter(new FileOutputStream(
metricsOutputDir + "/jobruntime.csv"), "UTF-8"));
jobRuntimeLogBW.write("JobID,real_start_time,real_end_time," +
"simulate_start_time,simulate_end_time" + EOL);
jobRuntimeLogBW.flush();
}