当前位置: 首页>>代码示例>>Java>>正文


Java TaskSplitIndex类代码示例

本文整理汇总了Java中org.apache.hadoop.mapreduce.split.JobSplit.TaskSplitIndex的典型用法代码示例。如果您正苦于以下问题:Java TaskSplitIndex类的具体用法?Java TaskSplitIndex怎么用?Java TaskSplitIndex使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


TaskSplitIndex类属于org.apache.hadoop.mapreduce.split.JobSplit包,在下文中一共展示了TaskSplitIndex类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: createRemoteTask

import org.apache.hadoop.mapreduce.split.JobSplit.TaskSplitIndex; //导入依赖的package包/类
@Override
protected Task createRemoteTask() {
	 TaskSplitIndex splitIndex[] = new TaskSplitIndex[splitInfos.length];
	 int i=0;
	 for(TaskSplitMetaInfo splitInfo:splitInfos){
		 
		 splitIndex[i] = splitInfo.getSplitIndex();
		 
		 i++;
	 }
	 MapTask mapTask =
		      new MultiMapTask("", TypeConverter.fromYarn(getID()), partition,splitIndex, 1); // YARN doesn't have the concept of slots per task, set it as 1.
			  //new MultiMapTask();
		    mapTask.setUser(conf.get(MRJobConfig.USER_NAME));
		    mapTask.setConf(conf);
		    mapTask.setTaskType(TaskType.MULTI_MAP);
		    
   return mapTask;

}
 
开发者ID:yncxcw,项目名称:FlexMap,代码行数:21,代码来源:MultiMapTaskAttemptImpl.java

示例2: readFields

import org.apache.hadoop.mapreduce.split.JobSplit.TaskSplitIndex; //导入依赖的package包/类
@Override
 public void readFields(DataInput in) throws IOException {
   //((Task)this).readFields(in);	
super.readFields(in);  		
   if (isMapOrReduce()) {
   	
   	int splitLength=in.readInt();
   	
   	LOG.info("serial write:splitlenth"+splitLength);
   	
   	splitMetaInfos = new TaskSplitIndex[splitLength];
   	
   	for(int i=0;i<splitLength;i++){
   		splitMetaInfos[i]=new TaskSplitIndex();
   		splitMetaInfos[i].readFields(in);
   		LOG.info("serial read"+splitMetaInfos[i].toString());
    	 
 }	
   }
 }
 
开发者ID:yncxcw,项目名称:FlexMap,代码行数:21,代码来源:MultiMapTask.java

示例3: write

import org.apache.hadoop.mapreduce.split.JobSplit.TaskSplitIndex; //导入依赖的package包/类
@Override
public void write(DataOutput out) throws IOException {
  super.write(out);
  if (isMapOrReduce()) {
    if (splitMetaInfo != null) {
      splitMetaInfo.write(out);
    } else {
      new TaskSplitIndex().write(out);
    }
    //TODO do we really need to set this to null?
    splitMetaInfo = null;
  }
}
 
开发者ID:Nextzero,项目名称:hadoop-2.6.0-cdh5.4.3,代码行数:14,代码来源:MapTask.java

示例4: MultiMapTask

import org.apache.hadoop.mapreduce.split.JobSplit.TaskSplitIndex; //导入依赖的package包/类
public MultiMapTask(String jobFile, TaskAttemptID taskId, 
           int partition, TaskSplitIndex[] splitIndex,
           int numSlotsRequired){
	super(jobFile,taskId,partition,splitIndex[0],numSlotsRequired);
	
	this.splitMetaInfos=splitIndex;
}
 
开发者ID:yncxcw,项目名称:FlexMap,代码行数:8,代码来源:MultiMapTask.java

示例5: runOldMapper

import org.apache.hadoop.mapreduce.split.JobSplit.TaskSplitIndex; //导入依赖的package包/类
@SuppressWarnings("unchecked")
private <INKEY,INVALUE,OUTKEY,OUTVALUE>
void runOldMapper(final JobConf job,
                  final TaskSplitIndex splitIndex,
                  final TaskUmbilicalProtocol umbilical,
                  TaskReporter reporter
                  ) throws IOException, InterruptedException,
                           ClassNotFoundException {
  InputSplit inputSplit = getSplitDetails(new Path(splitIndex.getSplitLocation()),
         splitIndex.getStartOffset());

  updateJobWithSplit(job, inputSplit);
  reporter.setInputSplit(inputSplit);

  RecordReader<INKEY,INVALUE> in = isSkipping() ? 
      new SkippingRecordReader<INKEY,INVALUE>(inputSplit, umbilical, reporter) :
      new TrackedRecordReader<INKEY,INVALUE>(inputSplit, job, reporter);
  job.setBoolean("mapred.skip.on", isSkipping());


  int numReduceTasks = conf.getNumReduceTasks();
  LOG.info("numReduceTasks: " + numReduceTasks);
  MapOutputCollector collector = null;
  if (numReduceTasks > 0) {
    collector = new MapOutputBuffer(umbilical, job, reporter);
  } else { 
    collector = new DirectMapOutputCollector(umbilical, job, reporter);
  }
  MapRunnable<INKEY,INVALUE,OUTKEY,OUTVALUE> runner =
    ReflectionUtils.newInstance(job.getMapRunnerClass(), job);

  try {
    runner.run(in, new OldOutputCollector(collector, conf), reporter);
    collector.flush();
  } finally {
    //close
    in.close();                               // close input
    collector.close();
  }
}
 
开发者ID:Seagate,项目名称:hadoop-on-lustre,代码行数:41,代码来源:MapTask.java

示例6: getNewSplitDetailsFromDisk

import org.apache.hadoop.mapreduce.split.JobSplit.TaskSplitIndex; //导入依赖的package包/类
@SuppressWarnings("unchecked")
public static org.apache.hadoop.mapreduce.InputSplit getNewSplitDetailsFromDisk(
    TaskSplitIndex splitMetaInfo, JobConf jobConf, TezCounter splitBytesCounter)
    throws IOException {
  Path file = new Path(splitMetaInfo.getSplitLocation());
  long offset = splitMetaInfo.getStartOffset();

  // Split information read from local filesystem.
  FileSystem fs = FileSystem.getLocal(jobConf);
  file = fs.makeQualified(file);
  LOG.info("Reading input split file from : " + file);
  FSDataInputStream inFile = fs.open(file);
  inFile.seek(offset);
  String className = Text.readString(inFile);
  Class<org.apache.hadoop.mapreduce.InputSplit> cls;
  try {
    cls = (Class<org.apache.hadoop.mapreduce.InputSplit>) jobConf.getClassByName(className);
  } catch (ClassNotFoundException ce) {
    IOException wrap = new IOException("Split class " + className + " not found");
    wrap.initCause(ce);
    throw wrap;
  }
  SerializationFactory factory = new SerializationFactory(jobConf);
  Deserializer<org.apache.hadoop.mapreduce.InputSplit> deserializer = (Deserializer<org.apache.hadoop.mapreduce.InputSplit>) factory
      .getDeserializer(cls);
  deserializer.open(inFile);
  org.apache.hadoop.mapreduce.InputSplit split = deserializer.deserialize(null);
  long pos = inFile.getPos();
  if (splitBytesCounter != null) {
    splitBytesCounter.increment(pos - offset);
  }
  inFile.close();
  return split;
}
 
开发者ID:apache,项目名称:incubator-tez,代码行数:35,代码来源:MRInputUtils.java

示例7: getOldSplitDetailsFromDisk

import org.apache.hadoop.mapreduce.split.JobSplit.TaskSplitIndex; //导入依赖的package包/类
@SuppressWarnings("unchecked")
public static InputSplit getOldSplitDetailsFromDisk(TaskSplitIndex splitMetaInfo,
    JobConf jobConf, TezCounter splitBytesCounter) throws IOException {
  Path file = new Path(splitMetaInfo.getSplitLocation());
  FileSystem fs = FileSystem.getLocal(jobConf);
  file = fs.makeQualified(file);
  LOG.info("Reading input split file from : " + file);
  long offset = splitMetaInfo.getStartOffset();

  FSDataInputStream inFile = fs.open(file);
  inFile.seek(offset);
  String className = Text.readString(inFile);
  Class<org.apache.hadoop.mapred.InputSplit> cls;
  try {
    cls = (Class<org.apache.hadoop.mapred.InputSplit>) jobConf.getClassByName(className);
  } catch (ClassNotFoundException ce) {
    IOException wrap = new IOException("Split class " + className + " not found");
    wrap.initCause(ce);
    throw wrap;
  }
  SerializationFactory factory = new SerializationFactory(jobConf);
  Deserializer<org.apache.hadoop.mapred.InputSplit> deserializer = (Deserializer<org.apache.hadoop.mapred.InputSplit>) factory
      .getDeserializer(cls);
  deserializer.open(inFile);
  org.apache.hadoop.mapred.InputSplit split = deserializer.deserialize(null);
  long pos = inFile.getPos();
  if (splitBytesCounter != null) {
    splitBytesCounter.increment(pos - offset);
  }
  inFile.close();
  return split;
}
 
开发者ID:apache,项目名称:incubator-tez,代码行数:33,代码来源:MRInputUtils.java

示例8: initializeInternal

import org.apache.hadoop.mapreduce.split.JobSplit.TaskSplitIndex; //导入依赖的package包/类
@Private
void initializeInternal() throws IOException {
  // Primarily for visibility
  rrLock.lock();
  try {
    
    if (splitInfoViaEvents) {
      if (useNewApi) {
        mrReader = new MRReaderMapReduce(jobConf, getContext().getCounters(), inputRecordCounter,
            getContext().getApplicationId().getClusterTimestamp(), getContext()
                .getTaskVertexIndex(), getContext().getApplicationId().getId(), getContext()
                .getTaskIndex(), getContext().getTaskAttemptNumber());
      } else {
        mrReader = new MRReaderMapred(jobConf, getContext().getCounters(), inputRecordCounter);
      }
    } else {
      TaskSplitMetaInfo[] allMetaInfo = MRInputUtils.readSplits(jobConf);
      TaskSplitMetaInfo thisTaskMetaInfo = allMetaInfo[getContext().getTaskIndex()];
      TaskSplitIndex splitMetaInfo = new TaskSplitIndex(thisTaskMetaInfo.getSplitLocation(),
          thisTaskMetaInfo.getStartOffset());
      if (useNewApi) {
        org.apache.hadoop.mapreduce.InputSplit newInputSplit = MRInputUtils
            .getNewSplitDetailsFromDisk(splitMetaInfo, jobConf, getContext().getCounters()
                .findCounter(TaskCounter.SPLIT_RAW_BYTES));
        mrReader = new MRReaderMapReduce(jobConf, newInputSplit, getContext().getCounters(),
            inputRecordCounter, getContext().getApplicationId().getClusterTimestamp(),
            getContext().getTaskVertexIndex(), getContext().getApplicationId().getId(),
            getContext().getTaskIndex(), getContext().getTaskAttemptNumber());
      } else {
        org.apache.hadoop.mapred.InputSplit oldInputSplit = MRInputUtils
            .getOldSplitDetailsFromDisk(splitMetaInfo, jobConf, getContext().getCounters()
                .findCounter(TaskCounter.SPLIT_RAW_BYTES));
        mrReader = new MRReaderMapred(jobConf, oldInputSplit, getContext().getCounters(), inputRecordCounter);
      }
    }
  } finally {
    rrLock.unlock();
  }
  LOG.info("Initialzed MRInput: " + getContext().getSourceVertexName());
}
 
开发者ID:apache,项目名称:incubator-tez,代码行数:41,代码来源:MRInput.java

示例9: TestMapTask

import org.apache.hadoop.mapreduce.split.JobSplit.TaskSplitIndex; //导入依赖的package包/类
public TestMapTask(String jobFile, TaskAttemptID taskId, 
    int partition, TaskSplitIndex splitIndex,
    int numSlotsRequired) {
  super(jobFile, taskId, partition, splitIndex, numSlotsRequired);
}
 
开发者ID:naver,项目名称:hadoop,代码行数:6,代码来源:TestMapProgress.java

示例10: MapTask

import org.apache.hadoop.mapreduce.split.JobSplit.TaskSplitIndex; //导入依赖的package包/类
public MapTask(String jobFile, TaskAttemptID taskId, 
               int partition, TaskSplitIndex splitIndex,
               int numSlotsRequired) {
  super(jobFile, taskId, partition, numSlotsRequired);
  this.splitMetaInfo = splitIndex;
}
 
开发者ID:naver,项目名称:hadoop,代码行数:7,代码来源:MapTask.java

示例11: runOldMapper

import org.apache.hadoop.mapreduce.split.JobSplit.TaskSplitIndex; //导入依赖的package包/类
@SuppressWarnings("unchecked")
private <INKEY,INVALUE,OUTKEY,OUTVALUE>
void runOldMapper(final JobConf job,
                  final TaskSplitIndex splitIndex,
                  final TaskUmbilicalProtocol umbilical,
                  TaskReporter reporter
                  ) throws IOException, InterruptedException,
                           ClassNotFoundException {
  InputSplit inputSplit = getSplitDetails(new Path(splitIndex.getSplitLocation()),
         splitIndex.getStartOffset());

  updateJobWithSplit(job, inputSplit);
  reporter.setInputSplit(inputSplit);

  RecordReader<INKEY,INVALUE> in = isSkipping() ? 
      new SkippingRecordReader<INKEY,INVALUE>(umbilical, reporter, job) :
        new TrackedRecordReader<INKEY,INVALUE>(reporter, job);
  job.setBoolean(JobContext.SKIP_RECORDS, isSkipping());


  int numReduceTasks = conf.getNumReduceTasks();
  LOG.info("numReduceTasks: " + numReduceTasks);
  MapOutputCollector<OUTKEY, OUTVALUE> collector = null;
  if (numReduceTasks > 0) {
    collector = createSortingCollector(job, reporter);
  } else { 
    collector = new DirectMapOutputCollector<OUTKEY, OUTVALUE>();
     MapOutputCollector.Context context =
                         new MapOutputCollector.Context(this, job, reporter);
    collector.init(context);
  }
  MapRunnable<INKEY,INVALUE,OUTKEY,OUTVALUE> runner =
    ReflectionUtils.newInstance(job.getMapRunnerClass(), job);

  try {
    runner.run(in, new OldOutputCollector(collector, conf), reporter);
    mapPhase.complete();
    // start the sort phase only if there are reducers
    if (numReduceTasks > 0) {
      setPhase(TaskStatus.Phase.SORT);
    }
    statusUpdate(umbilical);
    collector.flush();
    
    in.close();
    in = null;
    
    collector.close();
    collector = null;
  } finally {
    closeQuietly(in);
    closeQuietly(collector);
  }
}
 
开发者ID:naver,项目名称:hadoop,代码行数:55,代码来源:MapTask.java

示例12: runNewMapper

import org.apache.hadoop.mapreduce.split.JobSplit.TaskSplitIndex; //导入依赖的package包/类
@SuppressWarnings("unchecked")
private <INKEY,INVALUE,OUTKEY,OUTVALUE>
void runNewMapper(final JobConf job,
                  final TaskSplitIndex splitIndex,
                  final TaskUmbilicalProtocol umbilical,
                  TaskReporter reporter
                  ) throws IOException, ClassNotFoundException,
                           InterruptedException {
  // make a task context so we can get the classes
  org.apache.hadoop.mapreduce.TaskAttemptContext taskContext =
    new org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl(job, 
                                                                getTaskID(),
                                                                reporter);
  // make a mapper
  org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE> mapper =
    (org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>)
      ReflectionUtils.newInstance(taskContext.getMapperClass(), job);
  // make the input format
  org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE> inputFormat =
    (org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE>)
      ReflectionUtils.newInstance(taskContext.getInputFormatClass(), job);
  // rebuild the input split
  org.apache.hadoop.mapreduce.InputSplit split = null;
  split = getSplitDetails(new Path(splitIndex.getSplitLocation()),
      splitIndex.getStartOffset());
  LOG.info("Processing split: " + split);

  org.apache.hadoop.mapreduce.RecordReader<INKEY,INVALUE> input =
    new NewTrackingRecordReader<INKEY,INVALUE>
      (split, inputFormat, reporter, taskContext);
  
  job.setBoolean(JobContext.SKIP_RECORDS, isSkipping());
  org.apache.hadoop.mapreduce.RecordWriter output = null;
  
  // get an output object
  if (job.getNumReduceTasks() == 0) {
    output = 
      new NewDirectOutputCollector(taskContext, job, umbilical, reporter);
  } else {
    output = new NewOutputCollector(taskContext, job, umbilical, reporter);
  }

  org.apache.hadoop.mapreduce.MapContext<INKEY, INVALUE, OUTKEY, OUTVALUE> 
  mapContext = 
    new MapContextImpl<INKEY, INVALUE, OUTKEY, OUTVALUE>(job, getTaskID(), 
        input, output, 
        committer, 
        reporter, split);

  org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>.Context 
      mapperContext = 
        new WrappedMapper<INKEY, INVALUE, OUTKEY, OUTVALUE>().getMapContext(
            mapContext);

  try {
    input.initialize(split, mapperContext);
    mapper.run(mapperContext);
    mapPhase.complete();
    setPhase(TaskStatus.Phase.SORT);
    statusUpdate(umbilical);
    input.close();
    input = null;
    output.close(mapperContext);
    output = null;
  } finally {
    closeQuietly(input);
    closeQuietly(output, mapperContext);
  }
}
 
开发者ID:naver,项目名称:hadoop,代码行数:70,代码来源:MapTask.java

示例13: run

import org.apache.hadoop.mapreduce.split.JobSplit.TaskSplitIndex; //导入依赖的package包/类
/**
 * Main method.
 */
boolean run(String[] args) 
    throws ClassNotFoundException, IOException, InterruptedException {
  if (args.length < 1) {
    System.out.println("Usage: IsolationRunner <path>/job.xml " +
             "<optional-user-name>");
    return false;
  }
  File jobFilename = new File(args[0]);
  if (!jobFilename.exists() || !jobFilename.isFile()) {
    System.out.println(jobFilename + " is not a valid job file.");
    return false;
  }
  String user;
  if (args.length > 1) {
    user = args[1];
  } else {
    user = UserGroupInformation.getCurrentUser().getShortUserName();
  }
  JobConf conf = new JobConf(new Path(jobFilename.toString()));
  conf.setUser(user);
  TaskAttemptID taskId = TaskAttemptID.forName(conf.get("mapred.task.id"));
  if (taskId == null) {
    System.out.println("mapred.task.id not found in configuration;" + 
        " job.xml is not a task config");
  }
  boolean isMap = conf.getBoolean("mapred.task.is.map", true);
  if (!isMap) {
    System.out.println("Only map tasks are supported.");
    return false;
  }
  int partition = conf.getInt("mapred.task.partition", 0);
  
  // setup the local and user working directories
  FileSystem local = FileSystem.getLocal(conf);
  LocalDirAllocator lDirAlloc = new LocalDirAllocator("mapred.local.dir");
  Path workDirName;
  boolean workDirExists = lDirAlloc.ifExists(MRConstants.WORKDIR, conf);
  if (workDirExists) {
    workDirName = TaskRunner.formWorkDir(lDirAlloc, conf);
  } else {
    workDirName = lDirAlloc.getLocalPathForWrite(MRConstants.WORKDIR, 
                                                     conf);
  }

  local.setWorkingDirectory(new Path(workDirName.toString()));
  
  FileSystem.get(conf).setWorkingDirectory(conf.getWorkingDirectory());
  
  // set up a classloader with the right classpath
  ClassLoader classLoader =
      makeClassLoader(conf, new File(workDirName.toString()));
  Thread.currentThread().setContextClassLoader(classLoader);
  conf.setClassLoader(classLoader);
  
  // split.dta file is used only by IsolationRunner. The file can now be in
  // any of the configured local disks, so use LocalDirAllocator to find out
  // where it is.
  Path localMetaSplit = 
      new LocalDirAllocator("mapred.local.dir").getLocalPathToRead(
          TaskTracker.getLocalSplitFile(conf.getUser(), taskId.getJobID()
              .toString(), taskId.toString()), conf);
  DataInputStream splitFile = FileSystem.getLocal(conf).open(localMetaSplit);
  TaskSplitIndex splitIndex = new TaskSplitIndex();
  splitIndex.readFields(splitFile);
  splitFile.close();
  Task task =
    new MapTask(jobFilename.toString(), taskId, partition, splitIndex, 1);
  task.setConf(conf);
  task.run(conf, new FakeUmbilical());
  return true;
}
 
开发者ID:Nextzero,项目名称:hadoop-2.6.0-cdh5.4.3,代码行数:75,代码来源:IsolationRunner.java

示例14: runOldMapper

import org.apache.hadoop.mapreduce.split.JobSplit.TaskSplitIndex; //导入依赖的package包/类
@SuppressWarnings("unchecked")
private <INKEY,INVALUE,OUTKEY,OUTVALUE>
void runOldMapper(final JobConf job,
                  final TaskSplitIndex splitIndex,
                  final TaskUmbilicalProtocol umbilical,
                  TaskReporter reporter
                  ) throws IOException, InterruptedException,
                           ClassNotFoundException {
  InputSplit inputSplit = getSplitDetails(new Path(splitIndex.getSplitLocation()),
         splitIndex.getStartOffset());

  updateJobWithSplit(job, inputSplit);
  reporter.setInputSplit(inputSplit);

  RecordReader<INKEY,INVALUE> rawIn =                  // open input
    job.getInputFormat().getRecordReader(inputSplit, job, reporter);
  RecordReader<INKEY,INVALUE> in = isSkipping() ? 
      new SkippingRecordReader<INKEY,INVALUE>(rawIn, umbilical, reporter) :
      new TrackedRecordReader<INKEY,INVALUE>(rawIn, reporter);
  job.setBoolean("mapred.skip.on", isSkipping());


  int numReduceTasks = conf.getNumReduceTasks();
  LOG.info("numReduceTasks: " + numReduceTasks);
  MapOutputCollector collector = null;
  if (numReduceTasks > 0) {
    collector = createSortingCollector(job, reporter);
  } else { 
    collector = new DirectMapOutputCollector<OUTKEY, OUTVALUE>();
     MapOutputCollector.Context context =
                         new MapOutputCollector.Context(this, job, reporter);
    collector.init(context);
  }
  MapRunnable<INKEY,INVALUE,OUTKEY,OUTVALUE> runner =
    ReflectionUtils.newInstance(job.getMapRunnerClass(), job);

  try {
    runner.run(in, new OldOutputCollector(collector, conf), reporter);
    collector.flush();
  } finally {
    //close
    in.close();                               // close input
    collector.close();
  }
}
 
开发者ID:Nextzero,项目名称:hadoop-2.6.0-cdh5.4.3,代码行数:46,代码来源:MapTask.java

示例15: runNewMapper

import org.apache.hadoop.mapreduce.split.JobSplit.TaskSplitIndex; //导入依赖的package包/类
@SuppressWarnings("unchecked")
private <INKEY,INVALUE,OUTKEY,OUTVALUE>
void runNewMapper(final JobConf job,
                  final TaskSplitIndex splitIndex,
                  final TaskUmbilicalProtocol umbilical,
                  TaskReporter reporter
                  ) throws IOException, ClassNotFoundException,
                           InterruptedException {
  // make a task context so we can get the classes
  org.apache.hadoop.mapreduce.TaskAttemptContext taskContext =
    new org.apache.hadoop.mapreduce.task.TaskAttemptContextImpl(job, 
                                                                getTaskID(),
                                                                reporter);
  // make a mapper
  org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE> mapper =
    (org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>)
      ReflectionUtils.newInstance(taskContext.getMapperClass(), job);
  // make the input format
  org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE> inputFormat =
    (org.apache.hadoop.mapreduce.InputFormat<INKEY,INVALUE>)
      ReflectionUtils.newInstance(taskContext.getInputFormatClass(), job);
  // rebuild the input split
  org.apache.hadoop.mapreduce.InputSplit split = null;
  split = getSplitDetails(new Path(splitIndex.getSplitLocation()),
      splitIndex.getStartOffset());
  LOG.info("Processing split: " + split);

  org.apache.hadoop.mapreduce.RecordReader<INKEY,INVALUE> input =
    new NewTrackingRecordReader<INKEY,INVALUE>
        (inputFormat.createRecordReader(split, taskContext), reporter);
  
  job.setBoolean("mapred.skip.on", isSkipping());
  org.apache.hadoop.mapreduce.RecordWriter output = null;
  
  // get an output object
  if (job.getNumReduceTasks() == 0) {
    output = 
      new NewDirectOutputCollector(taskContext, job, umbilical, reporter);
  } else {
    output = new NewOutputCollector(taskContext, job, umbilical, reporter);
  }
    
  org.apache.hadoop.mapreduce.MapContext<INKEY, INVALUE, OUTKEY, OUTVALUE> 
  mapContext = 
    new MapContextImpl<INKEY, INVALUE, OUTKEY, OUTVALUE>(job, getTaskID(), 
        input, output, 
        committer, 
        reporter, split);
    
  org.apache.hadoop.mapreduce.Mapper<INKEY,INVALUE,OUTKEY,OUTVALUE>.Context 
      mapperContext = 
        new WrappedMapper<INKEY, INVALUE, OUTKEY, OUTVALUE>().getMapContext(
            mapContext);

  input.initialize(split, mapperContext);
  mapper.run(mapperContext);
  statusUpdate(umbilical);
  input.close();
  output.close(mapperContext);
}
 
开发者ID:Nextzero,项目名称:hadoop-2.6.0-cdh5.4.3,代码行数:61,代码来源:MapTask.java


注:本文中的org.apache.hadoop.mapreduce.split.JobSplit.TaskSplitIndex类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。