本文整理汇总了Java中org.apache.hadoop.mapreduce.TaskAttemptContext类的典型用法代码示例。如果您正苦于以下问题:Java TaskAttemptContext类的具体用法?Java TaskAttemptContext怎么用?Java TaskAttemptContext使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
TaskAttemptContext类属于org.apache.hadoop.mapreduce包,在下文中一共展示了TaskAttemptContext类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: writeOutput
import org.apache.hadoop.mapreduce.TaskAttemptContext; //导入依赖的package包/类
private void writeOutput(RecordWriter theRecordWriter,
TaskAttemptContext context) throws IOException, InterruptedException {
NullWritable nullWritable = NullWritable.get();
try {
theRecordWriter.write(key1, val1);
theRecordWriter.write(null, nullWritable);
theRecordWriter.write(null, val1);
theRecordWriter.write(nullWritable, val2);
theRecordWriter.write(key2, nullWritable);
theRecordWriter.write(key1, null);
theRecordWriter.write(null, null);
theRecordWriter.write(key2, val2);
} finally {
theRecordWriter.close(context);
}
}
示例2: NewTrackingRecordReader
import org.apache.hadoop.mapreduce.TaskAttemptContext; //导入依赖的package包/类
NewTrackingRecordReader(org.apache.hadoop.mapreduce.InputSplit split,
org.apache.hadoop.mapreduce.InputFormat<K, V> inputFormat,
TaskReporter reporter,
org.apache.hadoop.mapreduce.TaskAttemptContext taskContext)
throws InterruptedException, IOException {
this.reporter = reporter;
this.inputRecordCounter = reporter
.getCounter(TaskCounter.MAP_INPUT_RECORDS);
this.fileInputByteCounter = reporter
.getCounter(FileInputFormatCounter.BYTES_READ);
List <Statistics> matchedStats = null;
if (split instanceof org.apache.hadoop.mapreduce.lib.input.FileSplit) {
matchedStats = getFsStatistics(((org.apache.hadoop.mapreduce.lib.input.FileSplit) split)
.getPath(), taskContext.getConfiguration());
}
fsStats = matchedStats;
long bytesInPrev = getInputBytes(fsStats);
this.real = inputFormat.createRecordReader(split, taskContext);
long bytesInCurr = getInputBytes(fsStats);
fileInputByteCounter.increment(bytesInCurr - bytesInPrev);
}
示例3: writeRandomKeyValues
import org.apache.hadoop.mapreduce.TaskAttemptContext; //导入依赖的package包/类
/**
* Write random values to the writer assuming a table created using
* {@link #FAMILIES} as column family descriptors
*/
private void writeRandomKeyValues(RecordWriter<ImmutableBytesWritable, KeyValue> writer,
TaskAttemptContext context, Set<byte[]> families, int numRows)
throws IOException, InterruptedException {
byte keyBytes[] = new byte[Bytes.SIZEOF_INT];
int valLength = 10;
byte valBytes[] = new byte[valLength];
int taskId = context.getTaskAttemptID().getTaskID().getId();
assert taskId < Byte.MAX_VALUE : "Unit tests dont support > 127 tasks!";
final byte [] qualifier = Bytes.toBytes("data");
Random random = new Random();
for (int i = 0; i < numRows; i++) {
Bytes.putInt(keyBytes, 0, i);
random.nextBytes(valBytes);
ImmutableBytesWritable key = new ImmutableBytesWritable(keyBytes);
for (byte[] family : families) {
KeyValue kv = new KeyValue(keyBytes, family, qualifier, valBytes);
writer.write(key, kv);
}
}
}
示例4: applyMapperJdbcUrl
import org.apache.hadoop.mapreduce.TaskAttemptContext; //导入依赖的package包/类
protected void applyMapperJdbcUrl(TaskAttemptContext context, int mapperId) {
Configuration conf = context.getConfiguration();
// Retrieve the JDBC URL that should be used by this mapper.
// We achieve this by modifying the JDBC URL property in the
// configuration, prior to the OraOopDBRecordWriter's (ancestral)
// constructor using the configuration to establish a connection
// to the database - via DBConfiguration.getConnection()...
String mapperJdbcUrlPropertyName =
OraOopUtilities.getMapperJdbcUrlPropertyName(mapperId, conf);
// Get this mapper's JDBC URL
String mapperJdbcUrl = conf.get(mapperJdbcUrlPropertyName, null);
LOG.debug(String.format("Mapper %d has a JDBC URL of: %s", mapperId,
mapperJdbcUrl == null ? "<null>" : mapperJdbcUrl));
if (mapperJdbcUrl != null) {
conf.set(DBConfiguration.URL_PROPERTY, mapperJdbcUrl);
}
}
示例5: OraOopDBRecordWriterBase
import org.apache.hadoop.mapreduce.TaskAttemptContext; //导入依赖的package包/类
public OraOopDBRecordWriterBase(TaskAttemptContext context, int mapperId)
throws ClassNotFoundException, SQLException {
super(context);
this.mapperId = mapperId;
this.mapperRowNumber = 1;
Configuration conf = context.getConfiguration();
// Log any info that might be useful to us...
logBatchSettings();
// Connect to Oracle...
Connection connection = this.getConnection();
String thisOracleInstanceName =
OraOopOracleQueries.getCurrentOracleInstanceName(connection);
LOG.info(String.format(
"This record writer is connected to Oracle via the JDBC URL: \n"
+ "\t\"%s\"\n" + "\tto the Oracle instance: \"%s\"", connection
.toString(), thisOracleInstanceName));
// Initialize the Oracle session...
OracleConnectionFactory.initializeOracleConnection(connection, conf);
connection.setAutoCommit(false);
}
示例6: getExportTableAndColumns
import org.apache.hadoop.mapreduce.TaskAttemptContext; //导入依赖的package包/类
protected void getExportTableAndColumns(TaskAttemptContext context)
throws SQLException {
Configuration conf = context.getConfiguration();
String schema =
context.getConfiguration().get(OraOopConstants.ORAOOP_TABLE_OWNER);
String localTableName =
context.getConfiguration().get(OraOopConstants.ORAOOP_TABLE_NAME);
if (schema == null || schema.isEmpty() || localTableName == null
|| localTableName.isEmpty()) {
throw new RuntimeException(
"Unable to recall the schema and name of the Oracle table "
+ "being exported.");
}
this.oracleTable = new OracleTable(schema, localTableName);
setOracleTableColumns(OraOopOracleQueries.getTableColumns(this
.getConnection(), this.oracleTable, OraOopUtilities
.omitLobAndLongColumnsDuringImport(conf), OraOopUtilities
.recallSqoopJobType(conf), true // <- onlyOraOopSupportedTypes
, false // <- omitOraOopPseudoColumns
));
}
示例7: readSplit
import org.apache.hadoop.mapreduce.TaskAttemptContext; //导入依赖的package包/类
private static List<Text> readSplit(InputFormat<LongWritable,Text> format,
InputSplit split, Job job) throws IOException, InterruptedException {
List<Text> result = new ArrayList<Text>();
Configuration conf = job.getConfiguration();
TaskAttemptContext context = MapReduceTestUtil.
createDummyMapTaskAttemptContext(conf);
RecordReader<LongWritable, Text> reader = format.createRecordReader(split,
MapReduceTestUtil.createDummyMapTaskAttemptContext(conf));
MapContext<LongWritable,Text,LongWritable,Text> mcontext =
new MapContextImpl<LongWritable,Text,LongWritable,Text>(conf,
context.getTaskAttemptID(), reader, null, null,
MapReduceTestUtil.createDummyReporter(),
split);
reader.initialize(split, mcontext);
while (reader.nextKeyValue()) {
result.add(new Text(reader.getCurrentValue()));
}
return result;
}
示例8: writeRandomKeyValues
import org.apache.hadoop.mapreduce.TaskAttemptContext; //导入依赖的package包/类
/**
* Write random values to the writer assuming a table created using
* {@link #FAMILIES} as column family descriptors
*/
private void writeRandomKeyValues(RecordWriter<ImmutableBytesWritable, Cell> writer,
TaskAttemptContext context, Set<byte[]> families, int numRows)
throws IOException, InterruptedException {
byte keyBytes[] = new byte[Bytes.SIZEOF_INT];
int valLength = 10;
byte valBytes[] = new byte[valLength];
int taskId = context.getTaskAttemptID().getTaskID().getId();
assert taskId < Byte.MAX_VALUE : "Unit tests dont support > 127 tasks!";
final byte [] qualifier = Bytes.toBytes("data");
Random random = new Random();
for (int i = 0; i < numRows; i++) {
Bytes.putInt(keyBytes, 0, i);
random.nextBytes(valBytes);
ImmutableBytesWritable key = new ImmutableBytesWritable(keyBytes);
for (byte[] family : families) {
Cell kv = new KeyValue(keyBytes, family, qualifier, valBytes);
writer.write(key, kv);
}
}
}
示例9: readSplit
import org.apache.hadoop.mapreduce.TaskAttemptContext; //导入依赖的package包/类
private static List<Text> readSplit(KeyValueTextInputFormat format,
InputSplit split, Job job) throws IOException, InterruptedException {
List<Text> result = new ArrayList<Text>();
Configuration conf = job.getConfiguration();
TaskAttemptContext context = MapReduceTestUtil.
createDummyMapTaskAttemptContext(conf);
RecordReader<Text, Text> reader = format.createRecordReader(split,
MapReduceTestUtil.createDummyMapTaskAttemptContext(conf));
MapContext<Text, Text, Text, Text> mcontext =
new MapContextImpl<Text, Text, Text, Text>(conf,
context.getTaskAttemptID(), reader, null, null,
MapReduceTestUtil.createDummyReporter(),
split);
reader.initialize(split, mcontext);
while (reader.nextKeyValue()) {
result.add(new Text(reader.getCurrentValue()));
}
reader.close();
return result;
}
示例10: acquire
import org.apache.hadoop.mapreduce.TaskAttemptContext; //导入依赖的package包/类
/**
* Factory method that
* 1. acquires a chunk for the specified map-task attempt
* 2. returns a DynamicInputChunk associated with the acquired chunk-file.
* @param taskAttemptContext The attempt-context for the map task that's
* trying to acquire a chunk.
* @return The acquired dynamic-chunk. The chunk-file is renamed to the
* attempt-id (from the attempt-context.)
* @throws IOException Exception on failure.
* @throws InterruptedException Exception on failure.
*/
public static DynamicInputChunk acquire(TaskAttemptContext taskAttemptContext)
throws IOException, InterruptedException {
if (!areInvariantsInitialized())
initializeChunkInvariants(taskAttemptContext.getConfiguration());
String taskId
= taskAttemptContext.getTaskAttemptID().getTaskID().toString();
Path acquiredFilePath = new Path(chunkRootPath, taskId);
if (fs.exists(acquiredFilePath)) {
LOG.info("Acquiring pre-assigned chunk: " + acquiredFilePath);
return new DynamicInputChunk(acquiredFilePath, taskAttemptContext);
}
for (FileStatus chunkFile : getListOfChunkFiles()) {
if (fs.rename(chunkFile.getPath(), acquiredFilePath)) {
LOG.info(taskId + " acquired " + chunkFile.getPath());
return new DynamicInputChunk(acquiredFilePath, taskAttemptContext);
}
else
LOG.warn(taskId + " could not acquire " + chunkFile.getPath());
}
return null;
}
示例11: initialize
import org.apache.hadoop.mapreduce.TaskAttemptContext; //导入依赖的package包/类
@Override
public void initialize( final InputSplit inputSplit, final TaskAttemptContext context ) throws IOException, InterruptedException {
FileSplit fileSplit = (FileSplit)inputSplit;
Configuration config = context.getConfiguration();
Path path = fileSplit.getPath();
FileSystem fs = path.getFileSystem( config );
long fileLength = fs.getLength( path );
long start = fileSplit.getStart();
long length = fileSplit.getLength();
InputStream in = fs.open( path );
}
示例12: close
import org.apache.hadoop.mapreduce.TaskAttemptContext; //导入依赖的package包/类
@Override
public void close(TaskAttemptContext context)
throws IOException,InterruptedException {
reporter.progress();
if (out != null) {
long bytesOutPrev = getOutputBytes(fsStats);
out.close(context);
long bytesOutCurr = getOutputBytes(fsStats);
fileOutputByteCounter.increment(bytesOutCurr - bytesOutPrev);
}
}
示例13: transition
import org.apache.hadoop.mapreduce.TaskAttemptContext; //导入依赖的package包/类
@SuppressWarnings("unchecked")
@Override
public void transition(TaskAttemptImpl taskAttempt,
TaskAttemptEvent event) {
TaskAttemptContext taskContext =
new TaskAttemptContextImpl(taskAttempt.conf,
TypeConverter.fromYarn(taskAttempt.attemptId));
taskAttempt.eventHandler.handle(new CommitterTaskAbortEvent(
taskAttempt.attemptId, taskContext));
}
示例14: initialize
import org.apache.hadoop.mapreduce.TaskAttemptContext; //导入依赖的package包/类
public void initialize(InputSplit genericSplit, TaskAttemptContext context) {
try {
FileSplit split = (FileSplit)genericSplit;
Configuration job = context.getConfiguration();
this.maxLineLength = job.getInt("mapreduce.input.linerecordreader.line.maxlength", 2147483647);
this.start = split.getStart();
this.end = this.start + split.getLength();
Path file = split.getPath();
FileSystem fs = file.getFileSystem(job);
this.fileIn = fs.open(file);
CompressionCodec codec = (new CompressionCodecFactory(job)).getCodec(file);
if(null != codec) {
this.isCompressedInput = true;
this.decompressor = CodecPool.getDecompressor(codec);
if(codec instanceof SplittableCompressionCodec) {
SplitCompressionInputStream cIn = ((SplittableCompressionCodec)codec).createInputStream(this.fileIn, this.decompressor, this.start, this.end, SplittableCompressionCodec.READ_MODE.BYBLOCK);
this.in = new CompressedSplitLineReader(cIn, job, this.recordDelimiterBytes);
this.start = cIn.getAdjustedStart();
this.end = cIn.getAdjustedEnd();
this.filePosition = cIn;
} else {
this.in = new SplitLineReader(codec.createInputStream(this.fileIn, this.decompressor), job, this.recordDelimiterBytes);
this.filePosition = this.fileIn;
}
} else {
this.fileIn.seek(this.start);
this.in = new SplitLineReader(this.fileIn, job, this.recordDelimiterBytes);
this.filePosition = this.fileIn;
}
if(this.start != 0L) {
this.start += (long)this.in.readLine(new Text(), 0, this.maxBytesToConsume(this.start));
}
this.pos = this.start;
}catch(Exception ex){
LOG.warn("Exception occurred during initialization {}", ex, ex);
}
}
示例15: getRecordWriter
import org.apache.hadoop.mapreduce.TaskAttemptContext; //导入依赖的package包/类
@Override
public RecordWriter<NullWritable,BytesWritable> getRecordWriter(
TaskAttemptContext job) throws IOException {
return new ChunkWriter(getDefaultWorkFile(job, ""),
job.getConfiguration());
}