本文整理汇总了Java中org.apache.hadoop.mapreduce.Job类的典型用法代码示例。如果您正苦于以下问题:Java Job类的具体用法?Java Job怎么用?Java Job使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
Job类属于org.apache.hadoop.mapreduce包,在下文中一共展示了Job类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: main
import org.apache.hadoop.mapreduce.Job; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
if(args.length != 2){
System.err.println("Usage: MaxTemperatureWithCombiner <input path> <output path>");
System.exit(-1);
}
Job job = new Job();
job.setJarByClass(MaxTemperatureWithCombiner.class);
job.setJobName("Max Temperature With Combiner");
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setMapperClass(MaxTemperatureMapper.class);
job.setCombinerClass(MaxTemperatureReducer.class);
job.setReducerClass(MaxTemperatureReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
示例2: main
import org.apache.hadoop.mapreduce.Job; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job =Job.getInstance(conf);
job.setJobName("TF-IDFCount");
job.setJarByClass(TF_IDF.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(TextArrayWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(DoubleWritable.class);
job.setMapperClass(TF_IDFMap.class);
job.setReducerClass(TF_IDFReduce.class);
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileInputFormat.addInputPath(job, new Path(args[1]));
FileOutputFormat.setOutputPath(job, new Path(args[2]));
boolean wait = job.waitForCompletion(true);
System.exit(wait ? 0 : 1);
}
示例3: createCopyJob
import org.apache.hadoop.mapreduce.Job; //导入依赖的package包/类
/**
* Creates a simple copy job.
*
* @param conf Configuration object
* @param outdir Output directory.
* @param indirs Comma separated input directories.
* @return Job initialized for a data copy job.
* @throws Exception If an error occurs creating job configuration.
*/
public static Job createCopyJob(Configuration conf, Path outdir,
Path... indirs) throws Exception {
conf.setInt(MRJobConfig.NUM_MAPS, 3);
Job theJob = Job.getInstance(conf);
theJob.setJobName("DataMoveJob");
FileInputFormat.setInputPaths(theJob, indirs);
theJob.setMapperClass(DataCopyMapper.class);
FileOutputFormat.setOutputPath(theJob, outdir);
theJob.setOutputKeyClass(Text.class);
theJob.setOutputValueClass(Text.class);
theJob.setReducerClass(DataCopyReducer.class);
theJob.setNumReduceTasks(1);
return theJob;
}
示例4: main
import org.apache.hadoop.mapreduce.Job; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "maxtemp");
job.setMapperClass(MaxTempMapper.class);
job.setReducerClass(MaxTempReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(FloatWritable.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
if (!job.waitForCompletion(true))
return;
}
示例5: configureInputFormat
import org.apache.hadoop.mapreduce.Job; //导入依赖的package包/类
@Override
public void configureInputFormat(Job job, String tableName,
String tableClassName, String splitByCol)
throws ClassNotFoundException, IOException {
// Write a line of text into a file so that we can get
// a record to the map task.
Path dir = new Path(this.options.getTempDir());
Path p = new Path(dir, "sqoop-dummy-import-job-file.txt");
FileSystem fs = FileSystem.getLocal(this.options.getConf());
if (fs.exists(p)) {
boolean result = fs.delete(p, false);
assertTrue("Couldn't delete temp file!", result);
}
BufferedWriter w = new BufferedWriter(
new OutputStreamWriter(fs.create(p)));
w.append("This is a line!");
w.close();
FileInputFormat.addInputPath(job, p);
// And set the InputFormat itself.
super.configureInputFormat(job, tableName, tableClassName, splitByCol);
}
示例6: call
import org.apache.hadoop.mapreduce.Job; //导入依赖的package包/类
public Job call() throws IOException, InterruptedException,
ClassNotFoundException {
ugi.doAs(
new PrivilegedExceptionAction<Job>() {
public Job run() throws IOException, ClassNotFoundException,
InterruptedException {
job.setMapperClass(LoadMapper.class);
job.setReducerClass(LoadReducer.class);
job.setNumReduceTasks(jobdesc.getNumberReduces());
job.setMapOutputKeyClass(GridmixKey.class);
job.setMapOutputValueClass(GridmixRecord.class);
job.setSortComparatorClass(LoadSortComparator.class);
job.setGroupingComparatorClass(SpecGroupingComparator.class);
job.setInputFormatClass(LoadInputFormat.class);
job.setOutputFormatClass(RawBytesOutputFormat.class);
job.setPartitionerClass(DraftPartitioner.class);
job.setJarByClass(LoadJob.class);
job.getConfiguration().setBoolean(Job.USED_GENERIC_PARSER, true);
FileOutputFormat.setOutputPath(job, outdir);
job.submit();
return job;
}
});
return job;
}
示例7: testChainMapNoOuptut
import org.apache.hadoop.mapreduce.Job; //导入依赖的package包/类
/**
* Tests one of the maps consuming output.
*
* @throws Exception
*/
public void testChainMapNoOuptut() throws Exception {
Configuration conf = createJobConf();
String expectedOutput = "";
Job job = MapReduceTestUtil.createJob(conf, inDir, outDir, 1, 0, input);
job.setJobName("chain");
ChainMapper.addMapper(job, ConsumeMap.class, IntWritable.class, Text.class,
LongWritable.class, Text.class, null);
ChainMapper.addMapper(job, Mapper.class, LongWritable.class, Text.class,
LongWritable.class, Text.class, null);
job.waitForCompletion(true);
assertTrue("Job failed", job.isSuccessful());
assertEquals("Outputs doesn't match", expectedOutput, MapReduceTestUtil
.readOutput(outDir, conf));
}
示例8: testAddDependencyJars
import org.apache.hadoop.mapreduce.Job; //导入依赖的package包/类
/**
* Look for jars we expect to be on the classpath by name.
*/
@Test
public void testAddDependencyJars() throws Exception {
Job job = new Job();
TableMapReduceUtil.addDependencyJars(job);
String tmpjars = job.getConfiguration().get("tmpjars");
// verify presence of modules
assertTrue(tmpjars.contains("hbase-common"));
assertTrue(tmpjars.contains("hbase-protocol"));
assertTrue(tmpjars.contains("hbase-client"));
assertTrue(tmpjars.contains("hbase-hadoop-compat"));
assertTrue(tmpjars.contains("hbase-server"));
// verify presence of 3rd party dependencies.
assertTrue(tmpjars.contains("zookeeper"));
assertTrue(tmpjars.contains("netty"));
assertTrue(tmpjars.contains("protobuf"));
assertTrue(tmpjars.contains("guava"));
assertTrue(tmpjars.contains("htrace"));
}
示例9: main
import org.apache.hadoop.mapreduce.Job; //导入依赖的package包/类
/**
* Main entry point.
*
* @param args The command line parameters.
* @throws Exception When running the job fails.
*/
public static void main(String[] args) throws Exception {
Configuration conf = HBaseConfiguration.create();
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("ERROR: Wrong number of parameters: " + args.length);
System.err.println("Usage: CellCounter ");
System.err.println(" <tablename> <outputDir> <reportSeparator> [^[regex pattern] or " +
"[Prefix] for row filter]] --starttime=[starttime] --endtime=[endtime]");
System.err.println(" Note: -D properties will be applied to the conf used. ");
System.err.println(" Additionally, the following SCAN properties can be specified");
System.err.println(" to get fine grained control on what is counted..");
System.err.println(" -D " + TableInputFormat.SCAN_COLUMN_FAMILY + "=<familyName>");
System.err.println(" <reportSeparator> parameter can be used to override the default report separator " +
"string : used to separate the rowId/column family name and qualifier name.");
System.err.println(" [^[regex pattern] or [Prefix] parameter can be used to limit the cell counter count " +
"operation to a limited subset of rows from the table based on regex or prefix pattern.");
System.exit(-1);
}
Job job = createSubmittableJob(conf, otherArgs);
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
示例10: main
import org.apache.hadoop.mapreduce.Job; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "test");
job.setMapperClass(testMapper.class);
job.setPartitionerClass(testPartitioner.class);
job.setReducerClass(testReducer.class);
job.setNumReduceTasks(10);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
if (!job.waitForCompletion(true))
return;
}
示例11: configueAvroMergeJob
import org.apache.hadoop.mapreduce.Job; //导入依赖的package包/类
private void configueAvroMergeJob(Configuration conf, Job job, Path oldPath, Path newPath)
throws IOException {
LOG.info("Trying to merge avro files");
final Schema oldPathSchema = AvroUtil.getAvroSchema(oldPath, conf);
final Schema newPathSchema = AvroUtil.getAvroSchema(newPath, conf);
if (oldPathSchema == null || newPathSchema == null || !oldPathSchema.equals(newPathSchema)) {
throw new IOException("Invalid schema for input directories. Schema for old data: ["
+ oldPathSchema + "]. Schema for new data: [" + newPathSchema + "]");
}
LOG.debug("Avro Schema:" + oldPathSchema);
job.setInputFormatClass(AvroInputFormat.class);
job.setOutputFormatClass(AvroOutputFormat.class);
job.setMapperClass(MergeAvroMapper.class);
job.setReducerClass(MergeAvroReducer.class);
AvroJob.setOutputSchema(job.getConfiguration(), oldPathSchema);
}
示例12: configureJob
import org.apache.hadoop.mapreduce.Job; //导入依赖的package包/类
/**
* Job configuration.
*/
public static Job configureJob(Configuration conf, String [] args)
throws IOException {
Path inputPath = new Path(args[0]);
String tableName = args[1];
Job job = new Job(conf, NAME + "_" + tableName);
job.setJarByClass(Uploader.class);
FileInputFormat.setInputPaths(job, inputPath);
job.setInputFormatClass(SequenceFileInputFormat.class);
job.setMapperClass(Uploader.class);
// No reducers. Just write straight to table. Call initTableReducerJob
// because it sets up the TableOutputFormat.
TableMapReduceUtil.initTableReducerJob(tableName, null, job);
job.setNumReduceTasks(0);
return job;
}
示例13: testInputFormat
import org.apache.hadoop.mapreduce.Job; //导入依赖的package包/类
void testInputFormat(Class<? extends InputFormat> clazz)
throws IOException, InterruptedException, ClassNotFoundException {
final Job job = MapreduceTestingShim.createJob(UTIL.getConfiguration());
job.setInputFormatClass(clazz);
job.setOutputFormatClass(NullOutputFormat.class);
job.setMapperClass(ExampleVerifier.class);
job.setNumReduceTasks(0);
LOG.debug("submitting job.");
assertTrue("job failed!", job.waitForCompletion(true));
assertEquals("Saw the wrong number of instances of the filtered-for row.", 2, job.getCounters()
.findCounter(TestTableInputFormat.class.getName() + ":row", "aaa").getValue());
assertEquals("Saw any instances of the filtered out row.", 0, job.getCounters()
.findCounter(TestTableInputFormat.class.getName() + ":row", "bbb").getValue());
assertEquals("Saw the wrong number of instances of columnA.", 1, job.getCounters()
.findCounter(TestTableInputFormat.class.getName() + ":family", "columnA").getValue());
assertEquals("Saw the wrong number of instances of columnB.", 1, job.getCounters()
.findCounter(TestTableInputFormat.class.getName() + ":family", "columnB").getValue());
assertEquals("Saw the wrong count of values for the filtered-for row.", 2, job.getCounters()
.findCounter(TestTableInputFormat.class.getName() + ":value", "value aaa").getValue());
assertEquals("Saw the wrong count of values for the filtered-out row.", 0, job.getCounters()
.findCounter(TestTableInputFormat.class.getName() + ":value", "value bbb").getValue());
}
示例14: runIncrementalPELoad
import org.apache.hadoop.mapreduce.Job; //导入依赖的package包/类
private void runIncrementalPELoad(Configuration conf, HTableDescriptor tableDescriptor,
RegionLocator regionLocator, Path outDir) throws IOException, UnsupportedEncodingException,
InterruptedException, ClassNotFoundException {
Job job = new Job(conf, "testLocalMRIncrementalLoad");
job.setWorkingDirectory(util.getDataTestDirOnTestFS("runIncrementalPELoad"));
job.getConfiguration().setStrings("io.serializations", conf.get("io.serializations"),
MutationSerialization.class.getName(), ResultSerialization.class.getName(),
KeyValueSerialization.class.getName());
setupRandomGeneratorMapper(job);
HFileOutputFormat2.configureIncrementalLoad(job, tableDescriptor, regionLocator);
FileOutputFormat.setOutputPath(job, outDir);
assertFalse(util.getTestFileSystem().exists(outDir)) ;
assertEquals(regionLocator.getAllRegionLocations().size(), job.getNumReduceTasks());
assertTrue(job.waitForCompletion(true));
}
示例15: doMapReduce
import org.apache.hadoop.mapreduce.Job; //导入依赖的package包/类
private void doMapReduce(final Class<? extends Test> cmd) throws IOException,
InterruptedException, ClassNotFoundException {
Configuration conf = getConf();
Path inputDir = writeInputFile(conf);
conf.set(EvaluationMapTask.CMD_KEY, cmd.getName());
conf.set(EvaluationMapTask.PE_KEY, getClass().getName());
Job job = Job.getInstance(conf);
job.setJarByClass(PerformanceEvaluation.class);
job.setJobName("HBase Performance Evaluation");
job.setInputFormatClass(PeInputFormat.class);
PeInputFormat.setInputPaths(job, inputDir);
job.setOutputKeyClass(LongWritable.class);
job.setOutputValueClass(LongWritable.class);
job.setMapperClass(EvaluationMapTask.class);
job.setReducerClass(LongSumReducer.class);
job.setNumReduceTasks(1);
job.setOutputFormatClass(TextOutputFormat.class);
TextOutputFormat.setOutputPath(job, new Path(inputDir.getParent(), "outputs"));
TableMapReduceUtil.addDependencyJars(job);
TableMapReduceUtil.initCredentials(job);
job.waitForCompletion(true);
}