当前位置: 首页>>代码示例>>Java>>正文


Java Task类代码示例

本文整理汇总了Java中org.apache.hadoop.mapred.Task的典型用法代码示例。如果您正苦于以下问题:Java Task类的具体用法?Java Task怎么用?Java Task使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


Task类属于org.apache.hadoop.mapred包,在下文中一共展示了Task类的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: testLTCCallTruncateLogsAsUser

import org.apache.hadoop.mapred.Task; //导入依赖的package包/类
/**
 * LinuxTaskController runs task-controller and it runs TaskLogsTruncater
 * in truncateLogsAsUser(). task-controller should be prodived with all
 * necessary java properties to launch JobLocalizer successfully.
 */
public void testLTCCallTruncateLogsAsUser() throws Exception {
  if (!initialized) {
    initMyTest();
  }

  List<Task> tasks = new ArrayList<Task>();
  tasks.add(new MyMapTask());

  try {
    ltc.truncateLogsAsUser(user, tasks);
  } catch (IOException ie) {
    fail("Missing argument when running task-controller from " +
                                             "truncateLogsAsUser()\n");
  }
}
 
开发者ID:Seagate,项目名称:hadoop-on-lustre,代码行数:21,代码来源:TestLinuxTaskControllerLaunchArgs.java

示例2: ContainerRemoteLaunchEvent

import org.apache.hadoop.mapred.Task; //导入依赖的package包/类
public ContainerRemoteLaunchEvent(TaskAttemptId taskAttemptID,
    ContainerLaunchContext containerLaunchContext,
    Container allocatedContainer, Task remoteTask) {
  super(taskAttemptID, allocatedContainer.getId(), StringInterner
    .weakIntern(allocatedContainer.getNodeId().toString()),
    allocatedContainer.getContainerToken(),
    ContainerLauncher.EventType.CONTAINER_REMOTE_LAUNCH);
  this.allocatedContainer = allocatedContainer;
  this.containerLaunchContext = containerLaunchContext;
  this.task = remoteTask;
}
 
开发者ID:naver,项目名称:hadoop,代码行数:12,代码来源:ContainerRemoteLaunchEvent.java

示例3: setStatus

import org.apache.hadoop.mapred.Task; //导入依赖的package包/类
/**
 * Set the current status of the task to the given string.
 */
@Override
public void setStatus(String status) {
  String normalizedStatus = Task.normalizeStatus(status, conf);
  setStatusString(normalizedStatus);
  reporter.setStatus(normalizedStatus);
}
 
开发者ID:naver,项目名称:hadoop,代码行数:10,代码来源:TaskAttemptContextImpl.java

示例4: Shuffle

import org.apache.hadoop.mapred.Task; //导入依赖的package包/类
public Shuffle(TaskAttemptID reduceId, JobConf jobConf, FileSystem localFS,
               TaskUmbilicalProtocol umbilical,
               LocalDirAllocator localDirAllocator,  
               Reporter reporter,
               CompressionCodec codec,
               Class<? extends Reducer> combinerClass,
               CombineOutputCollector<K,V> combineCollector,
               Counters.Counter spilledRecordsCounter,
               Counters.Counter reduceCombineInputCounter,
               Counters.Counter shuffledMapsCounter,
               Counters.Counter reduceShuffleBytes,
               Counters.Counter failedShuffleCounter,
               Counters.Counter mergedMapOutputsCounter,
               TaskStatus status,
               Progress copyPhase,
               Progress mergePhase,
               Task reduceTask) {
  this.reduceId = reduceId;
  this.jobConf = jobConf;
  this.umbilical = umbilical;
  this.reporter = reporter;
  this.metrics = new ShuffleClientMetrics(reduceId, jobConf);
  this.copyPhase = copyPhase;
  this.taskStatus = status;
  this.reduceTask = reduceTask;
  
  scheduler = 
    new ShuffleScheduler<K,V>(jobConf, status, this, copyPhase, 
                              shuffledMapsCounter, 
                              reduceShuffleBytes, failedShuffleCounter);
  merger = new MergeManager<K, V>(reduceId, jobConf, localFS, 
                                  localDirAllocator, reporter, codec, 
                                  combinerClass, combineCollector, 
                                  spilledRecordsCounter, 
                                  reduceCombineInputCounter, 
                                  mergedMapOutputsCounter, 
                                  this, mergePhase);
}
 
开发者ID:rekhajoshm,项目名称:mapreduce-fork,代码行数:39,代码来源:Shuffle.java

示例5: merge

import org.apache.hadoop.mapred.Task; //导入依赖的package包/类
@SuppressWarnings("unchecked")
@Override
public void merge(List<Segment<K,V>> segments) throws IOException {
    // sanity check
    if (segments == null || segments.isEmpty()) {
        LOG.info("No ondisk files to merge...");
        return;
    }
    
    Class<K> keyClass = (Class<K>) jobConf.getMapOutputKeyClass();
    Class<V> valueClass = (Class<V>) jobConf.getMapOutputValueClass();
    final RawComparator<K> comparator = (RawComparator<K>) jobConf.getOutputKeyComparator();
    
    long approxOutputSize = 0;
    int bytesPerSum = jobConf.getInt("io.bytes.per.checksum", 512);
    
    LOG.info("OnDiskMerger: We have  " + segments.size()
             + " map outputs on disk. Triggering merge...");
    
    // 1. Prepare the list of files to be merged.
    for (Segment<K,V> segment : segments) {
        approxOutputSize += segment.getLength();
    }
    
    // add the checksum length
    approxOutputSize += ChecksumFileSystem.getChecksumLength(approxOutputSize, bytesPerSum);
    
    // 2. Start the on-disk merge process
    Path outputPath = new Path(reduceDir, "file-" + (numPasses++)).suffix(Task.MERGED_OUTPUT_PREFIX);
    
    Writer<K, V> writer = new Writer<K, V>(jobConf, lustrefs.create(outputPath),
                                           (Class<K>) jobConf.getMapOutputKeyClass(), 
                                           (Class<V>) jobConf.getMapOutputValueClass(),
                                           codec, null, true);
    RawKeyValueIterator iter = null;
    try {
        iter = Merger.merge(jobConf, lustrefs, keyClass, valueClass, segments, ioSortFactor, mergeTempDir,
                            comparator, reporter, spilledRecordsCounter, mergedMapOutputsCounter, null);
        Merger.writeFile(iter, writer, reporter, jobConf);
        writer.close();
    } catch (IOException e) {
        lustrefs.delete(outputPath, true);
        throw e;
    }
    addSegmentToMerge(new Segment<K, V>(jobConf, lustrefs, outputPath, codec, false, null));
    LOG.info(reduceId + " Finished merging " + segments.size()
             + " map output files on disk of total-size " + approxOutputSize + "."
             + " Local output file is " + outputPath + " of size "
             + lustrefs.getFileStatus(outputPath).getLen());
}
 
开发者ID:intel-hpdd,项目名称:lustre-connector-for-hadoop,代码行数:51,代码来源:LustreFsShuffle.java

示例6: createContainerLaunchContext

import org.apache.hadoop.mapred.Task; //导入依赖的package包/类
static ContainerLaunchContext createContainerLaunchContext(
    Map<ApplicationAccessType, String> applicationACLs,
    Configuration conf, Token<JobTokenIdentifier> jobToken, Task remoteTask,
    final org.apache.hadoop.mapred.JobID oldJobId,
    WrappedJvmID jvmID,
    TaskAttemptListener taskAttemptListener,
    Credentials credentials) {

  synchronized (commonContainerSpecLock) {
    if (commonContainerSpec == null) {
      commonContainerSpec = createCommonContainerLaunchContext(
          applicationACLs, conf, jobToken, oldJobId, credentials);
    }
  }

  // Fill in the fields needed per-container that are missing in the common
  // spec.

  boolean userClassesTakesPrecedence =
    conf.getBoolean(MRJobConfig.MAPREDUCE_JOB_USER_CLASSPATH_FIRST, false);

  // Setup environment by cloning from common env.
  Map<String, String> env = commonContainerSpec.getEnvironment();
  Map<String, String> myEnv = new HashMap<String, String>(env.size());
  myEnv.putAll(env);
  if (userClassesTakesPrecedence) {
    myEnv.put(Environment.CLASSPATH_PREPEND_DISTCACHE.name(), "true");
  }
  MapReduceChildJVM.setVMEnv(myEnv, remoteTask);

  // Set up the launch command
  List<String> commands = MapReduceChildJVM.getVMCommand(
      taskAttemptListener.getAddress(), remoteTask, jvmID);

  // Duplicate the ByteBuffers for access by multiple containers.
  Map<String, ByteBuffer> myServiceData = new HashMap<String, ByteBuffer>();
  for (Entry<String, ByteBuffer> entry : commonContainerSpec
              .getServiceData().entrySet()) {
    myServiceData.put(entry.getKey(), entry.getValue().duplicate());
  }

  // Construct the actual Container
  ContainerLaunchContext container = ContainerLaunchContext.newInstance(
      commonContainerSpec.getLocalResources(), myEnv, commands,
      myServiceData, commonContainerSpec.getTokens().duplicate(),
      applicationACLs);

  return container;
}
 
开发者ID:naver,项目名称:hadoop,代码行数:50,代码来源:TaskAttemptImpl.java

示例7: getRemoteTask

import org.apache.hadoop.mapred.Task; //导入依赖的package包/类
public Task getRemoteTask() {
  return this.task;
}
 
开发者ID:naver,项目名称:hadoop,代码行数:4,代码来源:ContainerRemoteLaunchEvent.java

示例8: createRemoteTask

import org.apache.hadoop.mapred.Task; //导入依赖的package包/类
@Override
protected Task createRemoteTask() {
  return new MockTask(taskType);
}
 
开发者ID:naver,项目名称:hadoop,代码行数:5,代码来源:TestTaskImpl.java

示例9: merge

import org.apache.hadoop.mapred.Task; //导入依赖的package包/类
@Override
public void merge(List<CompressAwarePath> inputs) throws IOException {
  // sanity check
  if (inputs == null || inputs.isEmpty()) {
    LOG.info("No ondisk files to merge...");
    return;
  }
  
  long approxOutputSize = 0;
  int bytesPerSum = 
    jobConf.getInt("io.bytes.per.checksum", 512);
  
  LOG.info("OnDiskMerger: We have  " + inputs.size() + 
           " map outputs on disk. Triggering merge...");
  
  // 1. Prepare the list of files to be merged. 
  for (CompressAwarePath file : inputs) {
    approxOutputSize += localFS.getFileStatus(file).getLen();
  }

  // add the checksum length
  approxOutputSize += 
    ChecksumFileSystem.getChecksumLength(approxOutputSize, bytesPerSum);

  // 2. Start the on-disk merge process
  Path outputPath = 
    localDirAllocator.getLocalPathForWrite(inputs.get(0).toString(), 
        approxOutputSize, jobConf).suffix(Task.MERGED_OUTPUT_PREFIX);

  FSDataOutputStream out = CryptoUtils.wrapIfNecessary(jobConf, rfs.create(outputPath));
  Writer<K, V> writer = new Writer<K, V>(jobConf, out,
      (Class<K>) jobConf.getMapOutputKeyClass(),
      (Class<V>) jobConf.getMapOutputValueClass(), codec, null, true);

  RawKeyValueIterator iter  = null;
  CompressAwarePath compressAwarePath;
  Path tmpDir = new Path(reduceId.toString());
  try {
    iter = Merger.merge(jobConf, rfs,
                        (Class<K>) jobConf.getMapOutputKeyClass(),
                        (Class<V>) jobConf.getMapOutputValueClass(),
                        codec, inputs.toArray(new Path[inputs.size()]), 
                        true, ioSortFactor, tmpDir, 
                        (RawComparator<K>) jobConf.getOutputKeyComparator(), 
                        reporter, spilledRecordsCounter, null, 
                        mergedMapOutputsCounter, null);

    Merger.writeFile(iter, writer, reporter, jobConf);
    writer.close();
    compressAwarePath = new CompressAwarePath(outputPath,
        writer.getRawLength(), writer.getCompressedLength());
  } catch (IOException e) {
    localFS.delete(outputPath, true);
    throw e;
  }

  closeOnDiskFile(compressAwarePath);

  LOG.info(reduceId +
      " Finished merging " + inputs.size() + 
      " map output files on disk of total-size " + 
      approxOutputSize + "." + 
      " Local output file is " + outputPath + " of size " +
      localFS.getFileStatus(outputPath).getLen());
}
 
开发者ID:naver,项目名称:hadoop,代码行数:66,代码来源:MergeManagerImpl.java

示例10: testConsumerApi

import org.apache.hadoop.mapred.Task; //导入依赖的package包/类
@Test
/**
 * A testing method verifying availability and accessibility of API that is needed
 * for sub-classes of ShuffleConsumerPlugin
 */
public void testConsumerApi() {

  JobConf jobConf = new JobConf();
  ShuffleConsumerPlugin<K, V> shuffleConsumerPlugin = new TestShuffleConsumerPlugin<K, V>();

  //mock creation
  ReduceTask mockReduceTask = mock(ReduceTask.class);
  TaskUmbilicalProtocol mockUmbilical = mock(TaskUmbilicalProtocol.class);
  Reporter mockReporter = mock(Reporter.class);
  FileSystem mockFileSystem = mock(FileSystem.class);
  Class<? extends org.apache.hadoop.mapred.Reducer>  combinerClass = jobConf.getCombinerClass();
  @SuppressWarnings("unchecked")  // needed for mock with generic
  CombineOutputCollector<K, V>  mockCombineOutputCollector =
    (CombineOutputCollector<K, V>) mock(CombineOutputCollector.class);
  org.apache.hadoop.mapreduce.TaskAttemptID mockTaskAttemptID =
    mock(org.apache.hadoop.mapreduce.TaskAttemptID.class);
  LocalDirAllocator mockLocalDirAllocator = mock(LocalDirAllocator.class);
  CompressionCodec mockCompressionCodec = mock(CompressionCodec.class);
  Counter mockCounter = mock(Counter.class);
  TaskStatus mockTaskStatus = mock(TaskStatus.class);
  Progress mockProgress = mock(Progress.class);
  MapOutputFile mockMapOutputFile = mock(MapOutputFile.class);
  Task mockTask = mock(Task.class);

  try {
    String [] dirs = jobConf.getLocalDirs();
    // verify that these APIs are available through super class handler
    ShuffleConsumerPlugin.Context<K, V> context =
   new ShuffleConsumerPlugin.Context<K, V>(mockTaskAttemptID, jobConf, mockFileSystem,
                                              mockUmbilical, mockLocalDirAllocator,
                                              mockReporter, mockCompressionCodec,
                                              combinerClass, mockCombineOutputCollector,
                                              mockCounter, mockCounter, mockCounter,
                                              mockCounter, mockCounter, mockCounter,
                                              mockTaskStatus, mockProgress, mockProgress,
                                              mockTask, mockMapOutputFile, null);
    shuffleConsumerPlugin.init(context);
    shuffleConsumerPlugin.run();
    shuffleConsumerPlugin.close();
  }
  catch (Exception e) {
    assertTrue("Threw exception:" + e, false);
  }

  // verify that these APIs are available for 3rd party plugins
  mockReduceTask.getTaskID();
  mockReduceTask.getJobID();
  mockReduceTask.getNumMaps();
  mockReduceTask.getPartition();
  mockReporter.progress();
}
 
开发者ID:naver,项目名称:hadoop,代码行数:57,代码来源:TestShufflePlugin.java

示例11: TestSucceedAndFailedCopyMap

import org.apache.hadoop.mapred.Task; //导入依赖的package包/类
@SuppressWarnings("rawtypes")
@Test
public <K, V> void TestSucceedAndFailedCopyMap() throws Exception {
  JobConf job = new JobConf();
  job.setNumMapTasks(2);
  //mock creation
  TaskUmbilicalProtocol mockUmbilical = mock(TaskUmbilicalProtocol.class);
  Reporter mockReporter = mock(Reporter.class);
  FileSystem mockFileSystem = mock(FileSystem.class);
  Class<? extends org.apache.hadoop.mapred.Reducer>  combinerClass = job.getCombinerClass();
  @SuppressWarnings("unchecked")  // needed for mock with generic
  CombineOutputCollector<K, V>  mockCombineOutputCollector =
      (CombineOutputCollector<K, V>) mock(CombineOutputCollector.class);
  org.apache.hadoop.mapreduce.TaskAttemptID mockTaskAttemptID =
      mock(org.apache.hadoop.mapreduce.TaskAttemptID.class);
  LocalDirAllocator mockLocalDirAllocator = mock(LocalDirAllocator.class);
  CompressionCodec mockCompressionCodec = mock(CompressionCodec.class);
  Counter mockCounter = mock(Counter.class);
  TaskStatus mockTaskStatus = mock(TaskStatus.class);
  Progress mockProgress = mock(Progress.class);
  MapOutputFile mockMapOutputFile = mock(MapOutputFile.class);
  Task mockTask = mock(Task.class);
  @SuppressWarnings("unchecked")
  MapOutput<K, V> output = mock(MapOutput.class);

  ShuffleConsumerPlugin.Context<K, V> context =
      new ShuffleConsumerPlugin.Context<K, V>(
          mockTaskAttemptID, job, mockFileSystem,
          mockUmbilical, mockLocalDirAllocator,
          mockReporter, mockCompressionCodec,
          combinerClass, mockCombineOutputCollector,
          mockCounter, mockCounter, mockCounter,
          mockCounter, mockCounter, mockCounter,
          mockTaskStatus, mockProgress, mockProgress,
          mockTask, mockMapOutputFile, null);
  TaskStatus status = new TaskStatus() {
    @Override
    public boolean getIsMap() {
      return false;
    }
    @Override
    public void addFetchFailedMap(TaskAttemptID mapTaskId) {
    }
  };
  Progress progress = new Progress();
  ShuffleSchedulerImpl<K, V> scheduler = new ShuffleSchedulerImpl<K, V>(job,
      status, null, null, progress, context.getShuffledMapsCounter(),
      context.getReduceShuffleBytes(), context.getFailedShuffleCounter());

  MapHost host1 = new MapHost("host1", null);
  TaskAttemptID failedAttemptID = new TaskAttemptID(
      new org.apache.hadoop.mapred.TaskID(
      new JobID("test",0), TaskType.MAP, 0), 0);

  TaskAttemptID succeedAttemptID = new TaskAttemptID(
      new org.apache.hadoop.mapred.TaskID(
      new JobID("test",0), TaskType.MAP, 1), 1);

  // handle output fetch failure for failedAttemptID, part I
  scheduler.hostFailed(host1.getHostName());

  // handle output fetch succeed for succeedAttemptID
  long bytes = (long)500 * 1024 * 1024;
  scheduler.copySucceeded(succeedAttemptID, host1, bytes, 0, 500000, output);

  // handle output fetch failure for failedAttemptID, part II
  // for MAPREDUCE-6361: verify no NPE exception get thrown out
  scheduler.copyFailed(failedAttemptID, host1, true, false);
}
 
开发者ID:naver,项目名称:hadoop,代码行数:70,代码来源:TestShuffleScheduler.java

示例12: merge

import org.apache.hadoop.mapred.Task; //导入依赖的package包/类
@Override
public void merge(List<InMemoryMapOutput<K,V>> inputs) throws IOException {
  if (inputs == null || inputs.size() == 0) {
    return;
  }
  
  //name this output file same as the name of the first file that is 
  //there in the current list of inmem files (this is guaranteed to
  //be absent on the disk currently. So we don't overwrite a prev. 
  //created spill). Also we need to create the output file now since
  //it is not guaranteed that this file will be present after merge
  //is called (we delete empty files as soon as we see them
  //in the merge method)

  //figure out the mapId 
  TaskAttemptID mapId = inputs.get(0).getMapId();
  TaskID mapTaskId = mapId.getTaskID();

  List<Segment<K, V>> inMemorySegments = new ArrayList<Segment<K, V>>();
  long mergeOutputSize = 
    createInMemorySegments(inputs, inMemorySegments,0);
  int noInMemorySegments = inMemorySegments.size();

  Path outputPath = 
    mapOutputFile.getInputFileForWrite(mapTaskId,
                                       mergeOutputSize).suffix(
                                           Task.MERGED_OUTPUT_PREFIX);

  FSDataOutputStream out = CryptoUtils.wrapIfNecessary(jobConf, rfs.create(outputPath));
  Writer<K, V> writer = new Writer<K, V>(jobConf, out,
      (Class<K>) jobConf.getMapOutputKeyClass(),
      (Class<V>) jobConf.getMapOutputValueClass(), codec, null, true);

  RawKeyValueIterator rIter = null;
  CompressAwarePath compressAwarePath;
  try {
    LOG.info("Initiating in-memory merge with " + noInMemorySegments + 
             " segments...");
    
    rIter = Merger.merge(jobConf, rfs,
                         (Class<K>)jobConf.getMapOutputKeyClass(),
                         (Class<V>)jobConf.getMapOutputValueClass(),
                         inMemorySegments, inMemorySegments.size(),
                         new Path(reduceId.toString()),
                         (RawComparator<K>)jobConf.getOutputKeyComparator(),
                         reporter, spilledRecordsCounter, null, null);
    
    if (null == combinerClass) {
      Merger.writeFile(rIter, writer, reporter, jobConf);
    } else {
      combineCollector.setWriter(writer);
      combineAndSpill(rIter, reduceCombineInputCounter);
    }
    writer.close();
    compressAwarePath = new CompressAwarePath(outputPath,
        writer.getRawLength(), writer.getCompressedLength());

    LOG.info(reduceId +  
        " Merge of the " + noInMemorySegments +
        " files in-memory complete." +
        " Local file is " + outputPath + " of size " + 
        localFS.getFileStatus(outputPath).getLen());
  } catch (IOException e) { 
    //make sure that we delete the ondisk file that we created 
    //earlier when we invoked cloneFileAttributes
    localFS.delete(outputPath, true);
    throw e;
  }

  // Note the output of the merge
  closeOnDiskFile(compressAwarePath);
}
 
开发者ID:aliyun-beta,项目名称:aliyun-oss-hadoop-fs,代码行数:73,代码来源:MergeManagerImpl.java


注:本文中的org.apache.hadoop.mapred.Task类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。