本文整理汇总了Java中org.apache.hadoop.io.ShortWritable类的典型用法代码示例。如果您正苦于以下问题:Java ShortWritable类的具体用法?Java ShortWritable怎么用?Java ShortWritable使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
ShortWritable类属于org.apache.hadoop.io包,在下文中一共展示了ShortWritable类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: getWritableInstance
import org.apache.hadoop.io.ShortWritable; //导入依赖的package包/类
/**
* Returns the corresponding Writable object for this column type.
*/
public Writable getWritableInstance(com.cloudera.recordservice.core.Schema.Type type) {
switch (type) {
case BOOLEAN: return new BooleanWritable();
case TINYINT: return new ByteWritable();
case SMALLINT: return new ShortWritable();
case INT: return new IntWritable();
case BIGINT: return new LongWritable();
case FLOAT: return new FloatWritable();
case DOUBLE: return new DoubleWritable();
case VARCHAR:
case CHAR:
case STRING: return new Text();
case TIMESTAMP_NANOS: return new TimestampNanosWritable();
case DECIMAL: return new DecimalWritable();
default: throw new UnsupportedOperationException(
"Unexpected type: " + toString());
}
}
示例2: compareTo
import org.apache.hadoop.io.ShortWritable; //导入依赖的package包/类
public int compareTo(ShortArrayWritable that) {
Writable[] self = this.get();
Writable[] other = that.get();
if (self.length != other.length) {
// Length decides first.
return Integer.valueOf(self.length).compareTo(Integer.valueOf(other.length));
} else {
// Then, compare every pair of elements.
for (int i = 0; i < self.length; i++) {
short s = ((ShortWritable) self[i]).get();
short o = ((ShortWritable) other[i]).get();
if (s != o) return Integer.valueOf(s).compareTo(Integer.valueOf(o));
}
// Same length, same elements => same array.
return 0;
}
}
示例3: reduce
import org.apache.hadoop.io.ShortWritable; //导入依赖的package包/类
@Override
protected void reduce(ShortWritable inKey,
Iterable<FloatArrayWritable> inValues, Context context)
throws IOException, InterruptedException {
// This task sums all the partial results for one stripe of the vector
// v_k and adds the teleportation factor.
Configuration conf = context.getConfiguration();
int numPages = Integer.parseInt(conf.get("pagerank.num_pages"));
float beta = Float.parseFloat(conf.get("pagerank.damping_factor"));
FloatWritable[] vi = null;
for (FloatArrayWritable inValue : inValues) {
Writable[] partialVi = inValue.get();
if (vi == null) {
// vi is initialized here in order to know the correct size of
// the stripe (the last stripe can be incomplete).
vi = new FloatWritable[partialVi.length];
for (int k = 0; k < vi.length; k++) {
vi[k] = new FloatWritable(0);
}
}
// Sum the partial results.
for (int k = 0; k < vi.length; k++) {
vi[k].set(vi[k].get() + ((FloatWritable) partialVi[k]).get());
}
}
// Add the teleportation factor.
for (int k = 0; k < vi.length; k++) {
vi[k].set(beta * vi[k].get() + (1 - beta) / numPages);
}
context.write(inKey, new FloatArrayWritable(vi));
}
示例4: pageRankIteration
import org.apache.hadoop.io.ShortWritable; //导入依赖的package包/类
private void pageRankIteration(int iter, Configuration conf, Path outputDir)
throws Exception {
// This job performs an iteration of the power iteration method to
// compute PageRank. The map task processes each block M_{i,j}, loads
// the corresponding stripe j of the vector v_{k-1} and produces the
// partial result of the stripe i of the vector v_k. The reduce task
// sums all the partial results of v_k and adds the teleportation factor
// (the combiner only sums all the partial results). See Section 5.2
// (and 5.2.3 in particular) of Mining of Massive Datasets
// (http://infolab.stanford.edu/~ullman/mmds.html) for details. The
// output is written in a "vk" subdir of the output dir, where k is the
// iteration number. MapFileOutputFormat is used to keep an array of the
// stripes of v.
Job job = Job.getInstance(conf, "PageRank:Iteration");
job.setJarByClass(PageRank.class);
job.setInputFormatClass(SequenceFileInputFormat.class);
job.setMapperClass(PageRankIterationMapper.class);
job.setMapOutputKeyClass(ShortWritable.class);
job.setMapOutputValueClass(FloatArrayWritable.class);
job.setCombinerClass(PageRankIterationCombiner.class);
job.setReducerClass(PageRankIterationReducer.class);
job.setOutputFormatClass(MapFileOutputFormat.class);
job.setOutputKeyClass(ShortWritable.class);
job.setOutputValueClass(FloatArrayWritable.class);
FileInputFormat.addInputPath(job, new Path(outputDir, "M"));
FileOutputFormat.setOutputPath(job, new Path(outputDir, "v" + iter));
job.waitForCompletion(true);
}
示例5: map
import org.apache.hadoop.io.ShortWritable; //导入依赖的package包/类
@Override
public void map(ShortWritable inKey, FloatArrayWritable inValue,
Context context) throws IOException, InterruptedException {
Configuration conf = context.getConfiguration();
short blockSize = Short.parseShort(conf.get("pagerank.block_size"));
int topResults = Integer.parseInt(conf.get("pagerank.top_results"));
Writable[] vStripe = inValue.get();
for (int i = 0; i < vStripe.length; i++) {
int page = 1 + (inKey.get() - 1) * blockSize + i;
float pageRank = ((FloatWritable) vStripe[i]).get();
// The elements in the queue are sorted (in non-decreasing order) by
// PageRank. The queue is filled up until it contains topResults
// elements. Then, a new element will be added only if its PageRank
// is greater than the lowest PageRank in the queue. If the queue is
// full and a new element is added, the one with the lowest PageRank
// is removed from the queue.
if (topN.size() < topResults || pageRank >= topN.peek().getKey()) {
topN.add(new AbstractMap.SimpleEntry<Float, Integer>(pageRank, page));
if (topN.size() > topResults) {
topN.poll();
}
}
}
}
示例6: reduce
import org.apache.hadoop.io.ShortWritable; //导入依赖的package包/类
@Override
protected void reduce(ShortWritable inKey,
Iterable<FloatArrayWritable> inValues, Context context)
throws IOException, InterruptedException {
// This task sums all the partial results for one stripe of the vector
// v_k. It is a separate class since PageRankIterationReducer also adds
// the teleportation factor.
FloatWritable[] vi = null;
for (FloatArrayWritable inValue : inValues) {
Writable[] partialVi = inValue.get();
if (vi == null) {
// vi is initialized here in order to know the correct size of
// the stripe (the last stripe can be incomplete).
vi = new FloatWritable[partialVi.length];
for (int k = 0; k < vi.length; k++) {
vi[k] = new FloatWritable(0);
}
}
// Sum the partial results.
for (int k = 0; k < vi.length; k++) {
vi[k].set(vi[k].get() + ((FloatWritable) partialVi[k]).get());
}
}
context.write(inKey, new FloatArrayWritable(vi));
}
示例7: setupMapper
import org.apache.hadoop.io.ShortWritable; //导入依赖的package包/类
private void setupMapper(String intermediateTable) throws IOException {
// FileInputFormat.setInputPaths(job, input);
String[] dbTableNames = HadoopUtil.parseHiveTableName(intermediateTable);
HCatInputFormat.setInput(job, dbTableNames[0],
dbTableNames[1]);
job.setInputFormatClass(HCatInputFormat.class);
job.setMapperClass(FactDistinctColumnsMapper.class);
job.setCombinerClass(FactDistinctColumnsCombiner.class);
job.setMapOutputKeyClass(ShortWritable.class);
job.setMapOutputValueClass(Text.class);
}
示例8: writeObject
import org.apache.hadoop.io.ShortWritable; //导入依赖的package包/类
/**
* Writes an {@link Object} to the {@link DataOutput}.
*
* @param obj
* the object to write.
* @param out
* the data output stream.
* @throws IOException
* if I/O error occurs.
*/
public static final void writeObject(Object obj, DataOutput out)
throws IOException {
try {
if (obj == null) {
throw new IOException("Writing object is not defined: null.");
} else if (ClassUtils.isBoolean(obj)) {
(new BooleanWritable((boolean) obj)).write(out);
} else if (ClassUtils.isByte(obj)) {
(new ByteWritable((byte) obj)).write(out);
} else if (ClassUtils.isShort(obj)) {
(new ShortWritable((short) obj)).write(out);
} else if (ClassUtils.isInteger(obj)) {
(new IntWritable((int) obj)).write(out);
} else if (ClassUtils.isLong(obj)) {
(new LongWritable((long) obj)).write(out);
} else if (ClassUtils.isFloat(obj)) {
(new FloatWritable((float) obj)).write(out);
} else if (ClassUtils.isDouble(obj)) {
(new DoubleWritable((double) obj)).write(out);
} else if (ClassUtils.isString(obj)) {
Text.writeString(out, (String) obj);
} else if (ClassUtils.isEnum(obj)) {
(new IntWritable(((Enum<?>) obj).ordinal())).write(out);
} else if (ClassUtils.isArray(obj)) {
int length = Array.getLength(obj);
writeObject(length, out);
for (int j = 0; j < length; j++) {
writeObject(Array.get(obj, j), out);
}
} else {
((Writable) obj).write(out);
}
} catch (IllegalArgumentException exc) {
throw new IOException(exc);
}
}
示例9: readShort
import org.apache.hadoop.io.ShortWritable; //导入依赖的package包/类
/** read short value */
static short readShort(DataInput in) throws IOException {
ShortWritable uShort = TL_DATA.get().U_SHORT;
uShort.readFields(in);
return uShort.get();
}
示例10: writeShort
import org.apache.hadoop.io.ShortWritable; //导入依赖的package包/类
/** write short value */
static void writeShort(short value, DataOutputStream out) throws IOException {
ShortWritable uShort = TL_DATA.get().U_SHORT;
uShort.set(value);
uShort.write(out);
}
示例11: getPrimitiveWritableObject
import org.apache.hadoop.io.ShortWritable; //导入依赖的package包/类
@Override
public ShortWritable getPrimitiveWritableObject(Object o) {
return o == null ? null : new ShortWritable((Short)o);
}
示例12: reset
import org.apache.hadoop.io.ShortWritable; //导入依赖的package包/类
/**
* Resets the data in this RecordServiceRecord by translating the column data from the
* given Row to the internal array of Writables (columnVals_).
* Reads the column data from the given Row into this RecordServiceRecord. The
* schema are expected to match, minimal error checks are performed.
* This is a performance critical method.
*/
public void reset(Record record) {
if (record.getSchema().cols.size() != schema_.getNumColumns()) {
throw new IllegalArgumentException(String.format("Schema for new record does " +
"not match existing schema: %d (new) != %d (existing)",
record.getSchema().cols.size(), schema_.getNumColumns()));
}
for (int i = 0; i < schema_.getNumColumns(); ++i) {
if (record.isNull(i)) {
columnVals_[i] = null;
continue;
}
columnVals_[i] = columnValObjects_[i];
com.cloudera.recordservice.core.Schema.ColumnDesc cInfo = schema_.getColumnInfo(i);
Preconditions.checkNotNull(cInfo);
switch (cInfo.type.typeId) {
case BOOLEAN:
((BooleanWritable) columnValObjects_[i]).set(record.nextBoolean(i));
break;
case TINYINT:
((ByteWritable) columnValObjects_[i]).set(record.nextByte(i));
break;
case SMALLINT:
((ShortWritable) columnValObjects_[i]).set(record.nextShort(i));
break;
case INT:
((IntWritable) columnValObjects_[i]).set(record.nextInt(i));
break;
case BIGINT:
((LongWritable) columnValObjects_[i]).set(record.nextLong(i));
break;
case FLOAT:
((FloatWritable) columnValObjects_[i]).set(record.nextFloat(i));
break;
case DOUBLE:
((DoubleWritable) columnValObjects_[i]).set(record.nextDouble(i));
break;
case STRING:
case VARCHAR:
case CHAR:
ByteArray s = record.nextByteArray(i);
((Text) columnValObjects_[i]).set(
s.byteBuffer().array(), s.offset(), s.len());
break;
case TIMESTAMP_NANOS:
((TimestampNanosWritable) columnValObjects_[i]).set(
record.nextTimestampNanos(i));
break;
case DECIMAL:
((DecimalWritable) columnValObjects_[i]).set(
record.nextDecimal(i));
break;
default:
throw new RuntimeException("Unsupported type: " + cInfo);
}
}
}
示例13: testReadAllTypes
import org.apache.hadoop.io.ShortWritable; //导入依赖的package包/类
@Test
public void testReadAllTypes() throws IOException, InterruptedException {
Configuration config = new Configuration();
RecordServiceInputFormat.RecordServiceRecordReader reader =
new RecordServiceInputFormat.RecordServiceRecordReader();
SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd");
format.setTimeZone(TimeZone.getTimeZone("GMT"));
try {
RecordServiceConfig.setInputTable(config, null, "rs.alltypes");
List<InputSplit> splits = PlanUtil.getSplits(config, new Credentials()).splits;
int numRows = 0;
for (InputSplit split: splits) {
reader.initialize(split,
new TaskAttemptContextImpl(new JobConf(config), new TaskAttemptID()));
while (reader.nextKeyValue()) {
RecordServiceRecord value = reader.getCurrentValue();
if (((BooleanWritable)value.getColumnValue(0)).get()) {
assertEquals(0, ((ByteWritable)value.getColumnValue(1)).get());
assertEquals(1, ((ShortWritable)value.getColumnValue(2)).get());
assertEquals(2, ((IntWritable)value.getColumnValue(3)).get());
assertEquals(3, ((LongWritable)value.getColumnValue(4)).get());
assertEquals(4.0, ((FloatWritable)value.getColumnValue(5)).get(), 0.1);
assertEquals(5.0, ((DoubleWritable)value.getColumnValue(6)).get(), 0.1);
assertEquals("hello", value.getColumnValue(7).toString());
assertEquals("vchar1", value.getColumnValue(8).toString());
assertEquals("char1", value.getColumnValue(9).toString());
assertEquals("2015-01-01", format.format(
((TimestampNanosWritable)value.getColumnValue(10)).get().toTimeStamp()));
assertEquals(
new BigDecimal("3.1415920000"),
((DecimalWritable)value.getColumnValue(11)).get().toBigDecimal());
} else {
assertEquals(6, ((ByteWritable)value.getColumnValue(1)).get());
assertEquals(7, ((ShortWritable)value.getColumnValue(2)).get());
assertEquals(8, ((IntWritable)value.getColumnValue(3)).get());
assertEquals(9, ((LongWritable)value.getColumnValue(4)).get());
assertEquals(10.0, ((FloatWritable)value.getColumnValue(5)).get(), 0.1);
assertEquals(11.0, ((DoubleWritable)value.getColumnValue(6)).get(), 0.1);
assertEquals("world", value.getColumnValue(7).toString());
assertEquals("vchar2", value.getColumnValue(8).toString());
assertEquals("char2", value.getColumnValue(9).toString());
assertEquals("2016-01-01",
format.format(
((TimestampNanosWritable)value.getColumnValue(10))
.get().toTimeStamp()));
assertEquals(
new BigDecimal("1234.5678900000"),
((DecimalWritable)value.getColumnValue(11)).get().toBigDecimal());
}
++numRows;
}
}
assertEquals(2, numRows);
} finally {
reader.close();
}
}
示例14: extractPigObject
import org.apache.hadoop.io.ShortWritable; //导入依赖的package包/类
/**
* Converts object from Hive's value system to Pig's value system
* see HCatBaseStorer#getJavaObj() for Pig->Hive conversion
* @param o object from Hive value system
* @return object in Pig value system
*/
public static Object extractPigObject(
Object o, com.cloudera.recordservice.core.Schema.TypeDesc itemType)
throws Exception {
// Note that HCatRecordSerDe.serializePrimitiveField() will be called before this,
// thus some type promotion/conversion may occur: e.g. Short to Integer. We should
// refactor this so that it's hapenning in one place per module/product that we are
// integrating with. All Pig conversion should be done here, etc.
if(o == null) {
return null;
}
Object result;
switch (itemType.typeId) {
case BOOLEAN:
result = ((BooleanWritable) o).get();
break;
case TINYINT:
result = ((ByteWritable) o).get();
break;
case SMALLINT:
result = (int) ((ShortWritable) o).get();
break;
case INT:
result = ((IntWritable) o).get();
break;
case BIGINT:
result = ((LongWritable)o).get();
break;
case FLOAT:
result = ((FloatWritable) o).get();
break;
case DOUBLE:
result = ((DoubleWritable) o).get();
break;
case STRING:
case VARCHAR:
case CHAR:
result = o.toString();
break;
case TIMESTAMP_NANOS:
TimestampNanos timestampNanos = ((TimestampNanosWritable) o).get();
// TODO: make sure this is correct
result = new DateTime(timestampNanos.toTimeStamp(),
DateTimeZone.forTimeZone(TimeZone.getTimeZone("GMT")));
break;
case DECIMAL:
Decimal decimal = ((DecimalWritable) o).get();
result = decimal.toBigDecimal();
break;
default:
result = o;
break;
}
return result;
}
示例15: ShortArrayWritable
import org.apache.hadoop.io.ShortWritable; //导入依赖的package包/类
public ShortArrayWritable() {
super(ShortWritable.class);
}