本文整理汇总了Java中org.apache.hadoop.hbase.io.hfile.TestHFileWriterV2类的典型用法代码示例。如果您正苦于以下问题:Java TestHFileWriterV2类的具体用法?Java TestHFileWriterV2怎么用?Java TestHFileWriterV2使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
TestHFileWriterV2类属于org.apache.hadoop.hbase.io.hfile包,在下文中一共展示了TestHFileWriterV2类的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: writeStoreFile
import org.apache.hadoop.hbase.io.hfile.TestHFileWriterV2; //导入依赖的package包/类
private void writeStoreFile(StoreFile.Writer writer) throws IOException {
final int rowLen = 32;
for (int i = 0; i < NUM_KV; ++i) {
byte[] k = TestHFileWriterV2.randomOrderedKey(rand, i);
byte[] v = TestHFileWriterV2.randomValue(rand);
int cfLen = rand.nextInt(k.length - rowLen + 1);
KeyValue kv = new KeyValue(
k, 0, rowLen,
k, rowLen, cfLen,
k, rowLen + cfLen, k.length - rowLen - cfLen,
rand.nextLong(),
generateKeyType(rand),
v, 0, v.length);
writer.append(kv);
}
}
示例2: createSortedKeyValues
import org.apache.hadoop.hbase.io.hfile.TestHFileWriterV2; //导入依赖的package包/类
private List<KeyValue> createSortedKeyValues(Random rand, int n) {
List<KeyValue> kvList = new ArrayList<KeyValue>(n);
for (int i = 0; i < n; ++i)
kvList.add(TestHFileWriterV2.randomKeyValue(rand));
Collections.sort(kvList, KeyValue.COMPARATOR);
return kvList;
}
示例3: isInBloom
import org.apache.hadoop.hbase.io.hfile.TestHFileWriterV2; //导入依赖的package包/类
private boolean isInBloom(StoreFileScanner scanner, byte[] row,
byte[] qualifier) {
Scan scan = new Scan(row, row);
scan.addColumn(Bytes.toBytes(TestHFileWriterV2.COLUMN_FAMILY_NAME), qualifier);
Store store = mock(Store.class);
HColumnDescriptor hcd = mock(HColumnDescriptor.class);
when(hcd.getName()).thenReturn(Bytes.toBytes(TestHFileWriterV2.COLUMN_FAMILY_NAME));
when(store.getFamily()).thenReturn(hcd);
return scanner.shouldUseScanner(scan, store, Long.MIN_VALUE);
}
示例4: readStoreFile
import org.apache.hadoop.hbase.io.hfile.TestHFileWriterV2; //导入依赖的package包/类
private void readStoreFile(int t, BloomType bt, List<KeyValue> kvs,
Path sfPath) throws IOException {
StoreFile sf = new StoreFile(fs, sfPath, conf, cacheConf, bt);
StoreFile.Reader r = sf.createReader();
final boolean pread = true; // does not really matter
StoreFileScanner scanner = r.getStoreFileScanner(true, pread);
{
// Test for false negatives (not allowed).
int numChecked = 0;
for (KeyValue kv : kvs) {
byte[] row = kv.getRow();
boolean present = isInBloom(scanner, row, kv.getQualifier());
assertTrue(testIdMsg + " Bloom filter false negative on row "
+ Bytes.toStringBinary(row) + " after " + numChecked
+ " successful checks", present);
++numChecked;
}
}
// Test for false positives (some percentage allowed). We test in two modes:
// "fake lookup" which ignores the key distribution, and production mode.
for (boolean fakeLookupEnabled : new boolean[] { true, false }) {
ByteBloomFilter.setFakeLookupMode(fakeLookupEnabled);
try {
String fakeLookupModeStr = ", fake lookup is " + (fakeLookupEnabled ?
"enabled" : "disabled");
CompoundBloomFilter cbf = (CompoundBloomFilter) r.getGeneralBloomFilter();
cbf.enableTestingStats();
int numFalsePos = 0;
Random rand = new Random(EVALUATION_SEED);
int nTrials = NUM_KV[t] * 10;
for (int i = 0; i < nTrials; ++i) {
byte[] query = TestHFileWriterV2.randomRowOrQualifier(rand);
if (isInBloom(scanner, query, bt, rand)) {
numFalsePos += 1;
}
}
double falsePosRate = numFalsePos * 1.0 / nTrials;
LOG.debug(String.format(testIdMsg
+ " False positives: %d out of %d (%f)",
numFalsePos, nTrials, falsePosRate) + fakeLookupModeStr);
// Check for obvious Bloom filter crashes.
assertTrue("False positive is too high: " + falsePosRate + " (greater "
+ "than " + TOO_HIGH_ERROR_RATE + ")" + fakeLookupModeStr,
falsePosRate < TOO_HIGH_ERROR_RATE);
// Now a more precise check to see if the false positive rate is not
// too high. The reason we use a relaxed restriction for the real-world
// case as opposed to the "fake lookup" case is that our hash functions
// are not completely independent.
double maxZValue = fakeLookupEnabled ? 1.96 : 2.5;
validateFalsePosRate(falsePosRate, nTrials, maxZValue, cbf,
fakeLookupModeStr);
// For checking the lower bound we need to eliminate the last chunk,
// because it is frequently smaller and the false positive rate in it
// is too low. This does not help if there is only one under-sized
// chunk, though.
int nChunks = cbf.getNumChunks();
if (nChunks > 1) {
numFalsePos -= cbf.getNumPositivesForTesting(nChunks - 1);
nTrials -= cbf.getNumQueriesForTesting(nChunks - 1);
falsePosRate = numFalsePos * 1.0 / nTrials;
LOG.info(testIdMsg + " False positive rate without last chunk is " +
falsePosRate + fakeLookupModeStr);
}
validateFalsePosRate(falsePosRate, nTrials, -2.58, cbf,
fakeLookupModeStr);
} finally {
ByteBloomFilter.setFakeLookupMode(false);
}
}
r.close(true); // end of test so evictOnClose
}
示例5: readStoreFile
import org.apache.hadoop.hbase.io.hfile.TestHFileWriterV2; //导入依赖的package包/类
private void readStoreFile(int t, BloomType bt, List<KeyValue> kvs,
Path sfPath) throws IOException {
StoreFile sf = new StoreFile(fs, sfPath, conf, cacheConf, bt,
NoOpDataBlockEncoder.INSTANCE);
StoreFile.Reader r = sf.createReader();
final boolean pread = true; // does not really matter
StoreFileScanner scanner = r.getStoreFileScanner(true, pread);
{
// Test for false negatives (not allowed).
int numChecked = 0;
for (KeyValue kv : kvs) {
byte[] row = kv.getRow();
boolean present = isInBloom(scanner, row, kv.getQualifier());
assertTrue(testIdMsg + " Bloom filter false negative on row "
+ Bytes.toStringBinary(row) + " after " + numChecked
+ " successful checks", present);
++numChecked;
}
}
// Test for false positives (some percentage allowed). We test in two modes:
// "fake lookup" which ignores the key distribution, and production mode.
for (boolean fakeLookupEnabled : new boolean[] { true, false }) {
ByteBloomFilter.setFakeLookupMode(fakeLookupEnabled);
try {
String fakeLookupModeStr = ", fake lookup is " + (fakeLookupEnabled ?
"enabled" : "disabled");
CompoundBloomFilter cbf = (CompoundBloomFilter) r.getGeneralBloomFilter();
cbf.enableTestingStats();
int numFalsePos = 0;
Random rand = new Random(EVALUATION_SEED);
int nTrials = NUM_KV[t] * 10;
for (int i = 0; i < nTrials; ++i) {
byte[] query = TestHFileWriterV2.randomRowOrQualifier(rand);
if (isInBloom(scanner, query, bt, rand)) {
numFalsePos += 1;
}
}
double falsePosRate = numFalsePos * 1.0 / nTrials;
LOG.debug(String.format(testIdMsg
+ " False positives: %d out of %d (%f)",
numFalsePos, nTrials, falsePosRate) + fakeLookupModeStr);
// Check for obvious Bloom filter crashes.
assertTrue("False positive is too high: " + falsePosRate + " (greater "
+ "than " + TOO_HIGH_ERROR_RATE + ")" + fakeLookupModeStr,
falsePosRate < TOO_HIGH_ERROR_RATE);
// Now a more precise check to see if the false positive rate is not
// too high. The reason we use a relaxed restriction for the real-world
// case as opposed to the "fake lookup" case is that our hash functions
// are not completely independent.
double maxZValue = fakeLookupEnabled ? 1.96 : 2.5;
validateFalsePosRate(falsePosRate, nTrials, maxZValue, cbf,
fakeLookupModeStr);
// For checking the lower bound we need to eliminate the last chunk,
// because it is frequently smaller and the false positive rate in it
// is too low. This does not help if there is only one under-sized
// chunk, though.
int nChunks = cbf.getNumChunks();
if (nChunks > 1) {
numFalsePos -= cbf.getNumPositivesForTesting(nChunks - 1);
nTrials -= cbf.getNumQueriesForTesting(nChunks - 1);
falsePosRate = numFalsePos * 1.0 / nTrials;
LOG.info(testIdMsg + " False positive rate without last chunk is " +
falsePosRate + fakeLookupModeStr);
}
validateFalsePosRate(falsePosRate, nTrials, -2.58, cbf,
fakeLookupModeStr);
} finally {
ByteBloomFilter.setFakeLookupMode(false);
}
}
r.close(true); // end of test so evictOnClose
}
示例6: isInBloom
import org.apache.hadoop.hbase.io.hfile.TestHFileWriterV2; //导入依赖的package包/类
private boolean isInBloom(StoreFileScanner scanner, byte[] row, BloomType bt,
Random rand) {
return isInBloom(scanner, row,
TestHFileWriterV2.randomRowOrQualifier(rand));
}