本文整理汇总了Java中org.apache.flink.streaming.util.serialization.KeyedSerializationSchema类的典型用法代码示例。如果您正苦于以下问题:Java KeyedSerializationSchema类的具体用法?Java KeyedSerializationSchema怎么用?Java KeyedSerializationSchema使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
KeyedSerializationSchema类属于org.apache.flink.streaming.util.serialization包,在下文中一共展示了KeyedSerializationSchema类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: DummyFlinkKafkaProducer
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchema; //导入依赖的package包/类
@SuppressWarnings("unchecked")
DummyFlinkKafkaProducer(Properties producerConfig, KeyedSerializationSchema<T> schema, FlinkKafkaPartitioner partitioner) {
super(DUMMY_TOPIC, schema, producerConfig, partitioner);
this.mockProducer = mock(KafkaProducer.class);
when(mockProducer.send(any(ProducerRecord.class), any(Callback.class))).thenAnswer(new Answer<Object>() {
@Override
public Object answer(InvocationOnMock invocationOnMock) throws Throwable {
pendingCallbacks.add(invocationOnMock.getArgumentAt(1, Callback.class));
return null;
}
});
this.pendingCallbacks = new ArrayList<>();
this.flushLatch = new MultiShotLatch();
}
示例2: getProducerSink
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchema; //导入依赖的package包/类
@Override
public <T> StreamSink<T> getProducerSink(
String topic,
KeyedSerializationSchema<T> serSchema,
Properties props,
FlinkKafkaPartitioner<T> partitioner) {
FlinkKafkaProducer09<T> prod = new FlinkKafkaProducer09<>(topic, serSchema, props, partitioner);
prod.setFlushOnCheckpoint(true);
return new StreamSink<>(prod);
}
示例3: getProducerSink
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchema; //导入依赖的package包/类
@Override
public <T> StreamSink<T> getProducerSink(
String topic,
KeyedSerializationSchema<T> serSchema,
Properties props,
FlinkKafkaPartitioner<T> partitioner) {
FlinkKafkaProducer08<T> prod = new FlinkKafkaProducer08<>(
topic,
serSchema,
props,
partitioner);
prod.setFlushOnCheckpoint(true);
return new StreamSink<>(prod);
}
示例4: getProducerSink
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchema; //导入依赖的package包/类
@Override
public <T> StreamSink<T> getProducerSink(String topic, KeyedSerializationSchema<T> serSchema, Properties props, FlinkKafkaPartitioner<T> partitioner) {
return new StreamSink<>(new FlinkKafkaProducer011<>(
topic,
serSchema,
props,
Optional.ofNullable(partitioner),
producerSemantic,
FlinkKafkaProducer011.DEFAULT_KAFKA_PRODUCERS_POOL_SIZE));
}
示例5: produceIntoKafka
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchema; //导入依赖的package包/类
@Override
public <T> DataStreamSink<T> produceIntoKafka(DataStream<T> stream, String topic, KeyedSerializationSchema<T> serSchema, Properties props, FlinkKafkaPartitioner<T> partitioner) {
return stream.addSink(new FlinkKafkaProducer011<>(
topic,
serSchema,
props,
Optional.ofNullable(partitioner),
producerSemantic,
FlinkKafkaProducer011.DEFAULT_KAFKA_PRODUCERS_POOL_SIZE));
}
示例6: writeToKafkaWithTimestamps
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchema; //导入依赖的package包/类
@Override
public <T> DataStreamSink<T> writeToKafkaWithTimestamps(DataStream<T> stream, String topic, KeyedSerializationSchema<T> serSchema, Properties props) {
FlinkKafkaProducer011<T> prod = new FlinkKafkaProducer011<>(
topic, serSchema, props, Optional.of(new FlinkFixedPartitioner<>()), producerSemantic, FlinkKafkaProducer011.DEFAULT_KAFKA_PRODUCERS_POOL_SIZE);
prod.setWriteTimestampToKafka(true);
return stream.addSink(prod);
}
示例7: writeToKafkaWithTimestamps
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchema; //导入依赖的package包/类
@Override
public <T> DataStreamSink<T> writeToKafkaWithTimestamps(DataStream<T> stream, String topic, KeyedSerializationSchema<T> serSchema, Properties props) {
FlinkKafkaProducer010<T> prod = new FlinkKafkaProducer010<>(topic, serSchema, props);
prod.setFlushOnCheckpoint(true);
prod.setWriteTimestampToKafka(true);
return stream.addSink(prod);
}
示例8: FlinkKafkaProducerBase
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchema; //导入依赖的package包/类
/**
* The main constructor for creating a FlinkKafkaProducer.
*
* @param defaultTopicId The default topic to write data to
* @param serializationSchema A serializable serialization schema for turning user objects into a kafka-consumable byte[] supporting key/value messages
* @param producerConfig Configuration properties for the KafkaProducer. 'bootstrap.servers.' is the only required argument.
* @param customPartitioner A serializable partitioner for assigning messages to Kafka partitions. Passing null will use Kafka's partitioner.
*/
public FlinkKafkaProducerBase(String defaultTopicId, KeyedSerializationSchema<IN> serializationSchema, Properties producerConfig, FlinkKafkaPartitioner<IN> customPartitioner) {
requireNonNull(defaultTopicId, "TopicID not set");
requireNonNull(serializationSchema, "serializationSchema not set");
requireNonNull(producerConfig, "producerConfig not set");
ClosureCleaner.clean(customPartitioner, true);
ClosureCleaner.ensureSerializable(serializationSchema);
this.defaultTopicId = defaultTopicId;
this.schema = serializationSchema;
this.producerConfig = producerConfig;
this.flinkKafkaPartitioner = customPartitioner;
// set the producer configuration properties for kafka record key value serializers.
if (!producerConfig.containsKey(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG)) {
this.producerConfig.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, ByteArraySerializer.class.getCanonicalName());
} else {
LOG.warn("Overwriting the '{}' is not recommended", ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG);
}
if (!producerConfig.containsKey(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG)) {
this.producerConfig.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, ByteArraySerializer.class.getCanonicalName());
} else {
LOG.warn("Overwriting the '{}' is not recommended", ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG);
}
// eagerly ensure that bootstrap servers are set.
if (!this.producerConfig.containsKey(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG)) {
throw new IllegalArgumentException(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG + " must be supplied in the producer config properties.");
}
this.topicPartitionsMap = new HashMap<>();
}
示例9: runKeyValueTest
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchema; //导入依赖的package包/类
public void runKeyValueTest() throws Exception {
final String topic = "keyvaluetest";
createTestTopic(topic, 1, 1);
final int elementCount = 5000;
// ----------- Write some data into Kafka -------------------
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
env.setRestartStrategy(RestartStrategies.noRestart());
env.getConfig().disableSysoutLogging();
DataStream<Tuple2<Long, PojoValue>> kvStream = env.addSource(new SourceFunction<Tuple2<Long, PojoValue>>() {
@Override
public void run(SourceContext<Tuple2<Long, PojoValue>> ctx) throws Exception {
Random rnd = new Random(1337);
for (long i = 0; i < elementCount; i++) {
PojoValue pojo = new PojoValue();
pojo.when = new Date(rnd.nextLong());
pojo.lon = rnd.nextLong();
pojo.lat = i;
// make every second key null to ensure proper "null" serialization
Long key = (i % 2 == 0) ? null : i;
ctx.collect(new Tuple2<>(key, pojo));
}
}
@Override
public void cancel() {
}
});
KeyedSerializationSchema<Tuple2<Long, PojoValue>> schema = new TypeInformationKeyValueSerializationSchema<>(Long.class, PojoValue.class, env.getConfig());
Properties producerProperties = FlinkKafkaProducerBase.getPropertiesFromBrokerList(brokerConnectionStrings);
producerProperties.setProperty("retries", "3");
kafkaServer.produceIntoKafka(kvStream, topic, schema, producerProperties, null);
env.execute("Write KV to Kafka");
// ----------- Read the data again -------------------
env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(1);
env.setRestartStrategy(RestartStrategies.noRestart());
env.getConfig().disableSysoutLogging();
KeyedDeserializationSchema<Tuple2<Long, PojoValue>> readSchema = new TypeInformationKeyValueSerializationSchema<>(Long.class, PojoValue.class, env.getConfig());
Properties props = new Properties();
props.putAll(standardProps);
props.putAll(secureProps);
DataStream<Tuple2<Long, PojoValue>> fromKafka = env.addSource(kafkaServer.getConsumer(topic, readSchema, props));
fromKafka.flatMap(new RichFlatMapFunction<Tuple2<Long, PojoValue>, Object>() {
long counter = 0;
@Override
public void flatMap(Tuple2<Long, PojoValue> value, Collector<Object> out) throws Exception {
// the elements should be in order.
Assert.assertTrue("Wrong value " + value.f1.lat, value.f1.lat == counter);
if (value.f1.lat % 2 == 0) {
assertNull("key was not null", value.f0);
} else {
Assert.assertTrue("Wrong value " + value.f0, value.f0 == counter);
}
counter++;
if (counter == elementCount) {
// we got the right number of elements
throw new SuccessException();
}
}
});
tryExecute(env, "Read KV from Kafka");
deleteTestTopic(topic);
}
示例10: getProducerSink
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchema; //导入依赖的package包/类
@Override
public <T> StreamSink<T> getProducerSink(
String topic,
KeyedSerializationSchema<T> serSchema,
Properties props,
KafkaPartitioner<T> partitioner) {
FlinkKafkaProducer09<T> prod = new FlinkKafkaProducer09<>(topic, serSchema, props, partitioner);
prod.setFlushOnCheckpoint(true);
return new StreamSink<>(prod);
}
示例11: getProducerSink
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchema; //导入依赖的package包/类
@Override
public <T> StreamSink<T> getProducerSink(
String topic,
KeyedSerializationSchema<T> serSchema,
Properties props,
KafkaPartitioner<T> partitioner) {
FlinkKafkaProducer08<T> prod = new FlinkKafkaProducer08<>(
topic,
serSchema,
props,
partitioner);
prod.setFlushOnCheckpoint(true);
return new StreamSink<>(prod);
}
示例12: FlinkKafkaProducerBase
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchema; //导入依赖的package包/类
/**
* The main constructor for creating a FlinkKafkaProducer.
*
* @param defaultTopicId The default topic to write data to
* @param serializationSchema A serializable serialization schema for turning user objects into a kafka-consumable byte[] supporting key/value messages
* @param producerConfig Configuration properties for the KafkaProducer. 'bootstrap.servers.' is the only required argument.
* @param customPartitioner A serializable partitioner for assigning messages to Kafka partitions. Passing null will use Kafka's partitioner
*/
public FlinkKafkaProducerBase(String defaultTopicId, KeyedSerializationSchema<IN> serializationSchema, Properties producerConfig, KafkaPartitioner<IN> customPartitioner) {
requireNonNull(defaultTopicId, "TopicID not set");
requireNonNull(serializationSchema, "serializationSchema not set");
requireNonNull(producerConfig, "producerConfig not set");
ClosureCleaner.clean(customPartitioner, true);
ClosureCleaner.ensureSerializable(serializationSchema);
this.defaultTopicId = defaultTopicId;
this.schema = serializationSchema;
this.producerConfig = producerConfig;
// set the producer configuration properties for kafka record key value serializers.
if (!producerConfig.containsKey(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG)) {
this.producerConfig.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, ByteArraySerializer.class.getCanonicalName());
} else {
LOG.warn("Overwriting the '{}' is not recommended", ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG);
}
if (!producerConfig.containsKey(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG)) {
this.producerConfig.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, ByteArraySerializer.class.getCanonicalName());
} else {
LOG.warn("Overwriting the '{}' is not recommended", ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG);
}
// eagerly ensure that bootstrap servers are set.
if (!this.producerConfig.containsKey(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG)) {
throw new IllegalArgumentException(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG + " must be supplied in the producer config properties.");
}
this.partitioner = customPartitioner;
}
示例13: produceIntoKafka
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchema; //导入依赖的package包/类
@Override
public <T> DataStreamSink<T> produceIntoKafka(DataStream<T> stream, String topic, KeyedSerializationSchema<T> serSchema, Properties props, FlinkKafkaPartitioner<T> partitioner) {
FlinkKafkaProducer09<T> prod = new FlinkKafkaProducer09<>(topic, serSchema, props, partitioner);
prod.setFlushOnCheckpoint(true);
return stream.addSink(prod);
}
示例14: writeToKafkaWithTimestamps
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchema; //导入依赖的package包/类
@Override
public <T> DataStreamSink<T> writeToKafkaWithTimestamps(DataStream<T> stream, String topic, KeyedSerializationSchema<T> serSchema, Properties props) {
throw new UnsupportedOperationException();
}
示例15: FlinkKafkaProducer
import org.apache.flink.streaming.util.serialization.KeyedSerializationSchema; //导入依赖的package包/类
/**
* @deprecated Use {@link FlinkKafkaProducer08#FlinkKafkaProducer08(String, String, KeyedSerializationSchema)}
*/
@Deprecated
public FlinkKafkaProducer(String brokerList, String topicId, KeyedSerializationSchema<IN> serializationSchema) {
super(topicId, serializationSchema, getPropertiesFromBrokerList(brokerList), (FlinkKafkaPartitioner<IN>) null);
}