本文整理汇总了Java中org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer010类的典型用法代码示例。如果您正苦于以下问题:Java FlinkKafkaProducer010类的具体用法?Java FlinkKafkaProducer010怎么用?Java FlinkKafkaProducer010使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
FlinkKafkaProducer010类属于org.apache.flink.streaming.connectors.kafka包,在下文中一共展示了FlinkKafkaProducer010类的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: writeEnrichedStream
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer010; //导入依赖的package包/类
private static void writeEnrichedStream(DataStream<AisMessage> enrichedAisMessagesStream,
String parsingConfig, boolean writeOutputStreamToFile, String outputLineDelimiter,
String outputPath, String outputStreamTopic) throws IOException {
if (writeOutputStreamToFile) {
enrichedAisMessagesStream.map(new AisMessagesToCsvMapper(outputLineDelimiter)).writeAsText(
outputPath, WriteMode.OVERWRITE);
return;
}
// Write to Kafka
Properties producerProps = AppUtils.getKafkaProducerProperties();
FlinkKafkaProducer010Configuration<AisMessage> myProducerConfig =
FlinkKafkaProducer010.writeToKafkaWithTimestamps(enrichedAisMessagesStream,
outputStreamTopic, new AisMessageCsvSchema(parsingConfig, outputLineDelimiter),
producerProps);
myProducerConfig.setLogFailuresOnly(false);
myProducerConfig.setFlushOnCheckpoint(true);
}
示例2: main
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer010; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
// Read parameters from command line
final ParameterTool params = ParameterTool.fromArgs(args);
if(params.getNumberOfParameters() < 4) {
System.out.println("\nUsage: FlinkReadKafka --read-topic <topic> --write-topic <topic> --bootstrap.servers <kafka brokers> --group.id <groupid>");
return;
}
// setup streaming environment
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.getConfig().setRestartStrategy(RestartStrategies.fixedDelayRestart(4, 10000));
env.enableCheckpointing(300000); // 300 seconds
env.getConfig().setGlobalJobParameters(params);
DataStream<String> messageStream = env
.addSource(new FlinkKafkaConsumer010<>(
params.getRequired("read-topic"),
new SimpleStringSchema(),
params.getProperties())).name("Read from Kafka");
// setup table environment
StreamTableEnvironment sTableEnv = TableEnvironment.getTableEnvironment(env);
// Write JSON payload back to Kafka topic
messageStream.addSink(new FlinkKafkaProducer010<>(
params.getRequired("write-topic"),
new SimpleStringSchema(),
params.getProperties())).name("Write To Kafka");
env.execute("FlinkReadWriteKafka");
}
示例3: main
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer010; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
TaxiRideCleansingParameterParser params = new TaxiRideCleansingParameterParser();
// TODO: refactor this method
if(!params.parseParams(args)){
final String dataFilePath = params.getDataFilePath();
// get an ExecutionEnvironment
StreamExecutionEnvironment env =
StreamExecutionEnvironment.getExecutionEnvironment();
// configure event-time processing
env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
// get the taxi ride data stream
DataStream<TaxiRide> rides = env.addSource(
new TaxiRideSource(dataFilePath, MAX_EVENT_DELAY_DEFAULT, SERVING_SPEED_FACTOR_DEFAULT));
TaxiRideCleansing taxiRideCleansing = new TaxiRideCleansing();
DataStream<TaxiRide> filteredRides = taxiRideCleansing.execute(rides);
filteredRides.addSink(new FlinkKafkaProducer010<>(
"localhost:9092", // Kafka broker host:port
"cleansedRides", // Topic to write to
new TaxiRideSchema()) // Serializer (provided as util)
);
// filteredRides.print();
env.execute("Running Taxi Ride Cleansing");
}
}
示例4: configuration
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer010; //导入依赖的package包/类
public static void configuration(DataStream<String> stream, String topic, Properties properties) {
// using Apache Kafka as a sink for serialized generic output
FlinkKafkaProducer010.FlinkKafkaProducer010Configuration kafkaConfig = FlinkKafkaProducer010
.writeToKafkaWithTimestamps(
stream,
topic,
new SimpleStringSchema(),
properties
);
kafkaConfig.setLogFailuresOnly(false);
kafkaConfig.setFlushOnCheckpoint(true);
}
示例5: configuration
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer010; //导入依赖的package包/类
public static void configuration(DataStream<StreetLamp> stream, Properties properties) {
// using Apache Kafka as
FlinkKafkaProducer010.FlinkKafkaProducer010Configuration kafkaConfig = FlinkKafkaProducer010
.writeToKafkaWithTimestamps(
stream,
"control",
new ControlSerializationSchema(),
properties
);
kafkaConfig.setLogFailuresOnly(false);
kafkaConfig.setFlushOnCheckpoint(true);
}
示例6: main
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer010; //导入依赖的package包/类
/**
* The main entry method
*
*/
public static void main(String[] args) throws Exception {
String cehkPointsPath =
Paths.get(configs.getStringProp("flinkCheckPointsPath") + "/" + System.currentTimeMillis())
.toUri().toString();
int parallelism = configs.getIntProp("parallelism");
String inputHdfsFile = configs.getStringProp("inputHDFSFilePath");
String outputTopicName = configs.getStringProp("outputHDFSKafkaTopic");
// Set up the execution environment
final StreamExecutionEnvironment env =
new StreamExecutionEnvBuilder().setParallelism(parallelism).setStateBackend(cehkPointsPath)
.build();
// Read the HDFS file
DataStreamSource<String> inputTextStream =
env.readTextFile(inputHdfsFile).setParallelism(parallelism);
FlinkKafkaProducer010Configuration<String> myProducerConfig =
FlinkKafkaProducer010.writeToKafkaWithTimestamps(inputTextStream, outputTopicName,
new SimpleStringSchema(), AppUtils.getKafkaProducerProperties());
myProducerConfig.setLogFailuresOnly(false);
myProducerConfig.setFlushOnCheckpoint(true);
System.out.println(env.getExecutionPlan());
JobExecutionResult executionResult = null;
try {
executionResult = env.execute(" HDFS to Kafka stream producer");
} catch (Exception e) {
System.out.println(e.getMessage());
}
System.out.println("Full execution time=" + executionResult.getNetRuntime(TimeUnit.MINUTES));
}
示例7: main
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer010; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
// parse input arguments
final ParameterTool parameterTool = ParameterTool.fromArgs(args);
if (parameterTool.getNumberOfParameters() < 5) {
System.out.println("Missing parameters!\n" +
"Usage: Kafka --input-topic <topic> --output-topic <topic> " +
"--bootstrap.servers <kafka brokers> " +
"--zookeeper.connect <zk quorum> --group.id <some id> [--prefix <prefix>]");
return;
}
String prefix = parameterTool.get("prefix", "PREFIX:");
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.getConfig().disableSysoutLogging();
env.getConfig().setRestartStrategy(RestartStrategies.fixedDelayRestart(4, 10000));
env.enableCheckpointing(5000); // create a checkpoint every 5 seconds
env.getConfig().setGlobalJobParameters(parameterTool); // make parameters available in the web interface
// make parameters available in the web interface
env.getConfig().setGlobalJobParameters(parameterTool);
DataStream<String> input = env
.addSource(new FlinkKafkaConsumer010<>(
parameterTool.getRequired("input-topic"),
new SimpleStringSchema(),
parameterTool.getProperties()))
.map(new PrefixingMapper(prefix));
input.addSink(
new FlinkKafkaProducer010<>(
parameterTool.getRequired("output-topic"),
new SimpleStringSchema(),
parameterTool.getProperties()));
env.execute("Kafka 0.10 Example");
}