本文整理汇总了Java中org.apache.flink.hadoopcompatibility.mapred.HadoopReduceCombineFunction类的典型用法代码示例。如果您正苦于以下问题:Java HadoopReduceCombineFunction类的具体用法?Java HadoopReduceCombineFunction怎么用?Java HadoopReduceCombineFunction使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
HadoopReduceCombineFunction类属于org.apache.flink.hadoopcompatibility.mapred包,在下文中一共展示了HadoopReduceCombineFunction类的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: testStandardCountingWithCombiner
import org.apache.flink.hadoopcompatibility.mapred.HadoopReduceCombineFunction; //导入依赖的package包/类
@Test
public void testStandardCountingWithCombiner() throws Exception{
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<Tuple2<IntWritable, IntWritable>> ds = HadoopTestData.getKVPairDataSet(env).
map(new Mapper1());
DataSet<Tuple2<IntWritable, IntWritable>> counts = ds.
groupBy(0).
reduceGroup(new HadoopReduceCombineFunction<IntWritable, IntWritable, IntWritable, IntWritable>(
new SumReducer(), new SumReducer()));
String resultPath = tempFolder.newFile().toURI().toString();
counts.writeAsText(resultPath);
env.execute();
String expected = "(0,5)\n" +
"(1,6)\n" +
"(2,6)\n" +
"(3,4)\n";
compareResultsByLinesInMemory(expected, resultPath);
}
示例2: testUngroupedHadoopReducer
import org.apache.flink.hadoopcompatibility.mapred.HadoopReduceCombineFunction; //导入依赖的package包/类
@Test
public void testUngroupedHadoopReducer() throws Exception {
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<Tuple2<IntWritable, IntWritable>> ds = HadoopTestData.getKVPairDataSet(env).
map(new Mapper2());
DataSet<Tuple2<IntWritable, IntWritable>> sum = ds.
reduceGroup(new HadoopReduceCombineFunction<IntWritable, IntWritable, IntWritable, IntWritable>(
new SumReducer(), new SumReducer()));
String resultPath = tempFolder.newFile().toURI().toString();
sum.writeAsText(resultPath);
env.execute();
String expected = "(0,231)\n";
compareResultsByLinesInMemory(expected, resultPath);
}
示例3: testCombiner
import org.apache.flink.hadoopcompatibility.mapred.HadoopReduceCombineFunction; //导入依赖的package包/类
@Test
public void testCombiner() throws Exception {
org.junit.Assume.assumeThat(mode, new IsEqual<TestExecutionMode>(TestExecutionMode.CLUSTER));
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<Tuple2<IntWritable, IntWritable>> ds = HadoopTestData.getKVPairDataSet(env).
map(new Mapper3());
DataSet<Tuple2<IntWritable, IntWritable>> counts = ds.
groupBy(0).
reduceGroup(new HadoopReduceCombineFunction<IntWritable, IntWritable, IntWritable, IntWritable>(
new SumReducer(), new KeyChangingReducer()));
String resultPath = tempFolder.newFile().toURI().toString();
counts.writeAsText(resultPath);
env.execute();
String expected = "(0,5)\n" +
"(1,6)\n" +
"(2,5)\n" +
"(3,5)\n";
compareResultsByLinesInMemory(expected, resultPath);
}
示例4: testStandardCountingWithCombiner
import org.apache.flink.hadoopcompatibility.mapred.HadoopReduceCombineFunction; //导入依赖的package包/类
@Test
public void testStandardCountingWithCombiner() throws Exception{
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<Tuple2<IntWritable, IntWritable>> ds = HadoopTestData.getKVPairDataSet(env).
map(new Mapper1());
DataSet<Tuple2<IntWritable, IntWritable>> counts = ds.
groupBy(0).
reduceGroup(new HadoopReduceCombineFunction<IntWritable, IntWritable, IntWritable, IntWritable>(
new SumReducer(), new SumReducer()));
String resultPath = tempFolder.newFile().toURI().toString();
counts.writeAsText(resultPath);
env.execute();
String expected = "(0,5)\n"+
"(1,6)\n" +
"(2,6)\n" +
"(3,4)\n";
compareResultsByLinesInMemory(expected, resultPath);
}
示例5: testCombiner
import org.apache.flink.hadoopcompatibility.mapred.HadoopReduceCombineFunction; //导入依赖的package包/类
@Test
public void testCombiner() throws Exception {
org.junit.Assume.assumeThat(mode, new IsEqual<TestExecutionMode>(TestExecutionMode.CLUSTER));
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<Tuple2<IntWritable, IntWritable>> ds = HadoopTestData.getKVPairDataSet(env).
map(new Mapper3());
DataSet<Tuple2<IntWritable, IntWritable>> counts = ds.
groupBy(0).
reduceGroup(new HadoopReduceCombineFunction<IntWritable, IntWritable, IntWritable, IntWritable>(
new SumReducer(), new KeyChangingReducer()));
String resultPath = tempFolder.newFile().toURI().toString();
counts.writeAsText(resultPath);
env.execute();
String expected = "(0,5)\n"+
"(1,6)\n" +
"(2,5)\n" +
"(3,5)\n";
compareResultsByLinesInMemory(expected, resultPath);
}
示例6: main
import org.apache.flink.hadoopcompatibility.mapred.HadoopReduceCombineFunction; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
if (args.length < 2) {
System.err.println("Usage: WordCount <input path> <result path>");
return;
}
final String inputPath = args[0];
final String outputPath = args[1];
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
// Set up the Hadoop Input Format
HadoopInputFormat<LongWritable, Text> hadoopInputFormat = new HadoopInputFormat<LongWritable, Text>(new TextInputFormat(), LongWritable.class, Text.class, new JobConf());
TextInputFormat.addInputPath(hadoopInputFormat.getJobConf(), new Path(inputPath));
// Create a Flink job with it
DataSet<Tuple2<LongWritable, Text>> text = env.createInput(hadoopInputFormat);
DataSet<Tuple2<Text, LongWritable>> words =
text.flatMap(new HadoopMapFunction<LongWritable, Text, Text, LongWritable>(new Tokenizer()))
.groupBy(0).reduceGroup(new HadoopReduceCombineFunction<Text, LongWritable, Text, LongWritable>(new Counter(), new Counter()));
// Set up Hadoop Output Format
HadoopOutputFormat<Text, LongWritable> hadoopOutputFormat =
new HadoopOutputFormat<Text, LongWritable>(new TextOutputFormat<Text, LongWritable>(), new JobConf());
hadoopOutputFormat.getJobConf().set("mapred.textoutputformat.separator", " ");
TextOutputFormat.setOutputPath(hadoopOutputFormat.getJobConf(), new Path(outputPath));
// Output & Execute
words.output(hadoopOutputFormat).setParallelism(1);
env.execute("Hadoop Compat WordCount");
}
示例7: main
import org.apache.flink.hadoopcompatibility.mapred.HadoopReduceCombineFunction; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
if (args.length < 2) {
System.err.println("Usage: WordCount <input path> <result path>");
return;
}
final String inputPath = args[0];
final String outputPath = args[1];
final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
// Set up the Hadoop Input Format
HadoopInputFormat<LongWritable, Text> hadoopInputFormat = new HadoopInputFormat<LongWritable, Text>(new TextInputFormat(), LongWritable.class, Text.class, new JobConf());
TextInputFormat.addInputPath(hadoopInputFormat.getJobConf(), new Path(inputPath));
// Create a Flink job with it
DataSet<Tuple2<LongWritable, Text>> text = env.createInput(hadoopInputFormat);
DataSet<Tuple2<Text, LongWritable>> words =
text.flatMap(new HadoopMapFunction<LongWritable, Text, Text, LongWritable>(new Tokenizer()))
.groupBy(0).reduceGroup(new HadoopReduceCombineFunction<Text, LongWritable, Text, LongWritable>(new Counter(), new Counter()));
// Set up Hadoop Output Format
HadoopOutputFormat<Text, LongWritable> hadoopOutputFormat =
new HadoopOutputFormat<Text, LongWritable>(new TextOutputFormat<Text, LongWritable>(), new JobConf());
hadoopOutputFormat.getJobConf().set("mapred.textoutputformat.separator", " ");
TextOutputFormat.setOutputPath(hadoopOutputFormat.getJobConf(), new Path(outputPath));
// Output & Execute
words.output(hadoopOutputFormat).setParallelism(1);
env.execute("Hadoop Compat WordCount");
}