本文整理汇总了Java中org.apache.flink.graph.utils.Tuple3ToEdgeMap类的典型用法代码示例。如果您正苦于以下问题:Java Tuple3ToEdgeMap类的具体用法?Java Tuple3ToEdgeMap怎么用?Java Tuple3ToEdgeMap使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
Tuple3ToEdgeMap类属于org.apache.flink.graph.utils包,在下文中一共展示了Tuple3ToEdgeMap类的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: getEdgesDataSet
import org.apache.flink.graph.utils.Tuple3ToEdgeMap; //导入依赖的package包/类
private static DataSet<Edge<Long, Double>> getEdgesDataSet(ExecutionEnvironment env) {
if (fileOutput) {
return env.readCsvFile(edgesInputPath)
.lineDelimiter("\n")
.fieldDelimiter("\t")
.types(Long.class, Long.class, Double.class)
.map(new Tuple3ToEdgeMap<>());
} else {
return SingleSourceShortestPathsData.getDefaultEdgeDataSet(env);
}
}
示例2: getEdgeDataSet
import org.apache.flink.graph.utils.Tuple3ToEdgeMap; //导入依赖的package包/类
private static DataSet<Edge<Long, Double>> getEdgeDataSet(ExecutionEnvironment env) {
if (fileOutput) {
return env.readCsvFile(edgesInputPath)
.fieldDelimiter("\t")
.lineDelimiter("\n")
.types(Long.class, Long.class, Double.class)
.map(new Tuple3ToEdgeMap<>());
} else {
return SingleSourceShortestPathsData.getDefaultEdgeDataSet(env);
}
}
示例3: getEdgesDataSet
import org.apache.flink.graph.utils.Tuple3ToEdgeMap; //导入依赖的package包/类
private static DataSet<Edge<Long, Double>> getEdgesDataSet(ExecutionEnvironment env) {
if (fileOutput) {
return env.readCsvFile(edgesInputPath)
.lineDelimiter("\n")
.fieldDelimiter("\t")
.ignoreComments("%")
.types(Long.class, Long.class, Double.class)
.map(new Tuple3ToEdgeMap<>());
} else {
return SingleSourceShortestPathsData.getDefaultEdgeDataSet(env);
}
}
示例4: testTranslation
import org.apache.flink.graph.utils.Tuple3ToEdgeMap; //导入依赖的package包/类
@Test
public void testTranslation() {
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
DataSet<Long> bcGather = env.fromElements(1L);
DataSet<Long> bcSum = env.fromElements(1L);
DataSet<Long> bcApply = env.fromElements(1L);
DataSet<Vertex<Long, Long>> result;
// ------------ construct the test program ------------------
DataSet<Edge<Long, NullValue>> edges = env.fromElements(new Tuple3<>(
1L, 2L, NullValue.getInstance())).map(new Tuple3ToEdgeMap<>());
Graph<Long, Long, NullValue> graph = Graph.fromDataSet(edges, new InitVertices(), env);
GSAConfiguration parameters = new GSAConfiguration();
parameters.registerAggregator(AGGREGATOR_NAME, new LongSumAggregator());
parameters.setName(ITERATION_NAME);
parameters.setParallelism(ITERATION_parallelism);
parameters.addBroadcastSetForGatherFunction(BC_SET_GATHER_NAME, bcGather);
parameters.addBroadcastSetForSumFunction(BC_SET_SUM_NAME, bcSum);
parameters.addBroadcastSetForApplyFunction(BC_SET_APLLY_NAME, bcApply);
result = graph.runGatherSumApplyIteration(
new GatherNeighborIds(), new SelectMinId(),
new UpdateComponentId(), NUM_ITERATIONS, parameters).getVertices();
result.output(new DiscardingOutputFormat<>());
// ------------- validate the java program ----------------
assertTrue(result instanceof DeltaIterationResultSet);
DeltaIterationResultSet<?, ?> resultSet = (DeltaIterationResultSet<?, ?>) result;
DeltaIteration<?, ?> iteration = resultSet.getIterationHead();
// check the basic iteration properties
assertEquals(NUM_ITERATIONS, resultSet.getMaxIterations());
assertArrayEquals(new int[]{0}, resultSet.getKeyPositions());
assertEquals(ITERATION_parallelism, iteration.getParallelism());
assertEquals(ITERATION_NAME, iteration.getName());
assertEquals(AGGREGATOR_NAME, iteration.getAggregators().getAllRegisteredAggregators().iterator().next().getName());
// validate that the semantic properties are set as they should
TwoInputUdfOperator<?, ?, ?, ?> solutionSetJoin = (TwoInputUdfOperator<?, ?, ?, ?>) resultSet.getNextWorkset();
assertTrue(solutionSetJoin.getSemanticProperties().getForwardingTargetFields(0, 0).contains(0));
assertTrue(solutionSetJoin.getSemanticProperties().getForwardingTargetFields(1, 0).contains(0));
SingleInputUdfOperator<?, ?, ?> sumReduce = (SingleInputUdfOperator<?, ?, ?>) solutionSetJoin.getInput1();
SingleInputUdfOperator<?, ?, ?> gatherMap = (SingleInputUdfOperator<?, ?, ?>) sumReduce.getInput();
// validate that the broadcast sets are forwarded
assertEquals(bcGather, gatherMap.getBroadcastSets().get(BC_SET_GATHER_NAME));
assertEquals(bcSum, sumReduce.getBroadcastSets().get(BC_SET_SUM_NAME));
assertEquals(bcApply, solutionSetJoin.getBroadcastSets().get(BC_SET_APLLY_NAME));
}
示例5: testGSACompiler
import org.apache.flink.graph.utils.Tuple3ToEdgeMap; //导入依赖的package包/类
@Test
public void testGSACompiler() {
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
env.setParallelism(DEFAULT_PARALLELISM);
// compose test program
DataSet<Edge<Long, NullValue>> edges = env.fromElements(new Tuple3<>(
1L, 2L, NullValue.getInstance())).map(new Tuple3ToEdgeMap<>());
Graph<Long, Long, NullValue> graph = Graph.fromDataSet(edges, new InitVertices(), env);
DataSet<Vertex<Long, Long>> result = graph.runGatherSumApplyIteration(
new GatherNeighborIds(), new SelectMinId(),
new UpdateComponentId(), 100).getVertices();
result.output(new DiscardingOutputFormat<>());
Plan p = env.createProgramPlan("GSA Connected Components");
OptimizedPlan op = compileNoStats(p);
// check the sink
SinkPlanNode sink = op.getDataSinks().iterator().next();
assertEquals(ShipStrategyType.FORWARD, sink.getInput().getShipStrategy());
assertEquals(DEFAULT_PARALLELISM, sink.getParallelism());
assertEquals(PartitioningProperty.HASH_PARTITIONED, sink.getGlobalProperties().getPartitioning());
// check the iteration
WorksetIterationPlanNode iteration = (WorksetIterationPlanNode) sink.getInput().getSource();
assertEquals(DEFAULT_PARALLELISM, iteration.getParallelism());
// check the solution set join and the delta
PlanNode ssDelta = iteration.getSolutionSetDeltaPlanNode();
assertTrue(ssDelta instanceof DualInputPlanNode); // this is only true if the update function preserves the partitioning
DualInputPlanNode ssJoin = (DualInputPlanNode) ssDelta;
assertEquals(DEFAULT_PARALLELISM, ssJoin.getParallelism());
assertEquals(ShipStrategyType.PARTITION_HASH, ssJoin.getInput1().getShipStrategy());
assertEquals(new FieldList(0), ssJoin.getInput1().getShipStrategyKeys());
// check the workset set join
SingleInputPlanNode sumReducer = (SingleInputPlanNode) ssJoin.getInput1().getSource();
SingleInputPlanNode gatherMapper = (SingleInputPlanNode) sumReducer.getInput().getSource();
DualInputPlanNode edgeJoin = (DualInputPlanNode) gatherMapper.getInput().getSource();
assertEquals(DEFAULT_PARALLELISM, edgeJoin.getParallelism());
// input1 is the workset
assertEquals(ShipStrategyType.FORWARD, edgeJoin.getInput1().getShipStrategy());
// input2 is the edges
assertEquals(ShipStrategyType.PARTITION_HASH, edgeJoin.getInput2().getShipStrategy());
assertTrue(edgeJoin.getInput2().getTempMode().isCached());
assertEquals(new FieldList(0), edgeJoin.getInput2().getShipStrategyKeys());
}
示例6: main
import org.apache.flink.graph.utils.Tuple3ToEdgeMap; //导入依赖的package包/类
@SuppressWarnings("serial")
public static void main(String[] args) throws Exception {
String edgeInputPath;
int maxIterations;
String outputPath;
if (args.length == 3) {
edgeInputPath = args[0];
outputPath = args[1];
maxIterations = Integer.parseInt(args[2]);
} else {
System.err.println("Usage: <input edges path> <output path> <num iterations>");
return;
}
ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
//read the Edge DataSet from the input file
DataSet<Edge<String, Double>> links = env.readCsvFile(edgeInputPath)
.fieldDelimiter("\t")
.lineDelimiter("\n")
.types(String.class, String.class, Double.class)
.map(new Tuple3ToEdgeMap<String, Double>());
//create a Graph with vertex values initialized to 1.0
Graph<String, Double, Double> network = Graph.fromDataSet(links,
new MapFunction<String, Double>() {
public Double map(String value) throws Exception {
return 1.0;
}
}, env);
//for each vertex calculate the total weight of its outgoing edges
DataSet<Tuple2<String, Double>> sumEdgeWeights =
network.reduceOnEdges(new SumWeight(), EdgeDirection.OUT);
// assign the transition probabilities as edge weights:
//divide edge weight by the total weight of outgoing edges for that source
Graph<String, Double, Double> networkWithWeights = network
.joinWithEdgesOnSource(sumEdgeWeights,
new EdgeJoinFunction<Double, Double>() {
@Override
public Double edgeJoin(Double v1, Double v2) throws Exception {
return v1 / v2;
}
});
//Now run the Page Rank algorithm over the weighted graph
DataSet<Vertex<String, Double>> pageRanks = networkWithWeights.run(
new PageRank<String>(DAMPENING_FACTOR, maxIterations));
pageRanks.writeAsCsv(outputPath, "\n", "\t");
// since file sinks are lazy,trigger the execution explicitly
env.execute("PageRank with Edge Weights");
}
示例7: fromTupleDataSet
import org.apache.flink.graph.utils.Tuple3ToEdgeMap; //导入依赖的package包/类
/**
* Creates a graph from a DataSet of Tuple2 objects for vertices and
* Tuple3 objects for edges.
*
* <p>The first field of the Tuple2 vertex object will become the vertex ID
* and the second field will become the vertex value.
* The first field of the Tuple3 object for edges will become the source ID,
* the second field will become the target ID, and the third field will become
* the edge value.
*
* @param vertices a DataSet of Tuple2 representing the vertices.
* @param edges a DataSet of Tuple3 representing the edges.
* @param context the flink execution environment.
* @return the newly created graph.
*/
public static <K, VV, EV> Graph<K, VV, EV> fromTupleDataSet(DataSet<Tuple2<K, VV>> vertices,
DataSet<Tuple3<K, K, EV>> edges, ExecutionEnvironment context) {
DataSet<Vertex<K, VV>> vertexDataSet = vertices
.map(new Tuple2ToVertexMap<>())
.name("Type conversion");
DataSet<Edge<K, EV>> edgeDataSet = edges
.map(new Tuple3ToEdgeMap<>())
.name("Type conversion");
return fromDataSet(vertexDataSet, edgeDataSet, context);
}