当前位置: 首页>>代码示例>>Java>>正文


Java ParameterTool类代码示例

本文整理汇总了Java中org.apache.flink.api.java.utils.ParameterTool的典型用法代码示例。如果您正苦于以下问题:Java ParameterTool类的具体用法?Java ParameterTool怎么用?Java ParameterTool使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


ParameterTool类属于org.apache.flink.api.java.utils包,在下文中一共展示了ParameterTool类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: main

import org.apache.flink.api.java.utils.ParameterTool; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
	ParameterTool pt = ParameterTool.fromArgs(args);

	StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment();
	see.setParallelism(1);

	Properties kinesisConsumerConfig = new Properties();
	kinesisConsumerConfig.setProperty(ConsumerConfigConstants.AWS_REGION, pt.getRequired("region"));
	kinesisConsumerConfig.setProperty(ConsumerConfigConstants.AWS_ACCESS_KEY_ID, pt.getRequired("accesskey"));
	kinesisConsumerConfig.setProperty(ConsumerConfigConstants.AWS_SECRET_ACCESS_KEY, pt.getRequired("secretkey"));

	DataStream<String> kinesis = see.addSource(new FlinkKinesisConsumer<>(
		"flink-test",
		new SimpleStringSchema(),
		kinesisConsumerConfig));

	kinesis.print();

	see.execute();
}
 
开发者ID:axbaretto,项目名称:flink,代码行数:21,代码来源:ConsumeFromKinesis.java

示例2: main

import org.apache.flink.api.java.utils.ParameterTool; //导入依赖的package包/类
public static void main(String[] args) throws Exception {

        // parse parameters
        ParameterTool params = ParameterTool.fromArgs(args);
        // path to ratings.csv file
        String ratingsCsvPath = params.getRequired("input");

        final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();

        DataSource<String> file = env.readTextFile(ratingsCsvPath);
        file.flatMap(new ExtractRating())
            .groupBy(0)
            // .reduceGroup(new SumRatingCount())
            .sum(1)
            .print();
    }
 
开发者ID:mushketyk,项目名称:flink-examples,代码行数:17,代码来源:RatingsDistribution.java

示例3: parseParams

import org.apache.flink.api.java.utils.ParameterTool; //导入依赖的package包/类
public boolean parseParams(String[] args) throws Exception {
	boolean wasHelpPrinted = false;
	ParameterTool parameter = ParameterTool.fromArgs(args);

	if(parameter.has("help")){
		printHelpMessage();
		wasHelpPrinted = true;
	}
	else {
		try {
			dataFilePath = parameter.getRequired("input");
		}
		catch(Exception e) {
			printHelpMessage();
			throw e;
		}

	}

	return wasHelpPrinted;
}
 
开发者ID:dineshtrivedi,项目名称:flink-java-project,代码行数:22,代码来源:TaxiRideCleansingParameterParser.java

示例4: main

import org.apache.flink.api.java.utils.ParameterTool; //导入依赖的package包/类
public static void main(String[] args) throws Exception {

		ParameterTool params = ParameterTool.fromArgs(args);
		final String nycTaxiRidesPath = params.get("nycTaxiRidesPath");

		final int maxEventDelay = 60;       // events are out of order by max 60 seconds
		final int servingSpeedFactor = 600; // events of 10 minutes are served in 1 second

		// set up streaming execution environment
		StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

		// start the data generator
		DataStream<TaxiRide> rides = env.addSource(
				new TaxiRideSource(nycTaxiRidesPath, maxEventDelay, servingSpeedFactor));

		// ===============================================================================
		//   1. clean up `rides`, so that the output stream only contains events
		//      with valid geo coordinates within NYC.
		//   2. print out the result stream to console
		// ===============================================================================

		// run the cleansing pipeline
		env.execute("Taxi Ride Cleansing");
	}
 
开发者ID:flink-taiwan,项目名称:jcconf2016-workshop,代码行数:25,代码来源:TaxiRideCleansing.java

示例5: main

import org.apache.flink.api.java.utils.ParameterTool; //导入依赖的package包/类
/**
 * Runs the JobManager process in {@link JobManagerMode#CLUSTER}.
 *
 * <p><strong>Required argument</strong>: <code>port</code>. Start the process with
 * <code>--port PORT</code>.
 *
 * <p>Other arguments are parsed to a {@link Configuration} and passed to the
 * JobManager, for instance: <code>--high-availability ZOOKEEPER --high-availability.zookeeper.quorum
 * "xyz:123:456"</code>.
 */
public static void main(String[] args) {
	try {
		ParameterTool params = ParameterTool.fromArgs(args);
		Configuration config = params.getConfiguration();
		LOG.info("Configuration: {}.", config);

		// Run the JobManager
		JobManager.runJobManager(config, JobManagerMode.CLUSTER, "localhost", 0);

		// Run forever. Forever, ever? Forever, ever!
		new CountDownLatch(1).await();
	}
	catch (Throwable t) {
		LOG.error("Failed to start JobManager process", t);
		System.exit(1);
	}
}
 
开发者ID:axbaretto,项目名称:flink,代码行数:28,代码来源:JobManagerProcess.java

示例6: main

import org.apache.flink.api.java.utils.ParameterTool; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
	// parse arguments
	ParameterTool params = ParameterTool.fromPropertiesFile(args[0]);

	// create streaming environment
	final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

	// enable event time processing
	env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);

	// enable fault-tolerance
	env.enableCheckpointing(1000);

	// enable restarts
	env.setRestartStrategy(RestartStrategies.fixedDelayRestart(50, 500L));

	env.setStateBackend(new FsStateBackend("file:///home/robert/flink-workdir/flink-streaming-etl/state-backend"));

	// run each operator separately
	env.disableOperatorChaining();

	// get data from Kafka
	Properties kParams = params.getProperties();
	kParams.setProperty("group.id", UUID.randomUUID().toString());
	DataStream<ObjectNode> inputStream = env.addSource(new FlinkKafkaConsumer09<>(params.getRequired("topic"), new JSONDeserializationSchema(), kParams)).name("Kafka 0.9 Source")
		.assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<ObjectNode>(Time.minutes(1L)) {
			@Override
			public long extractTimestamp(ObjectNode jsonNodes) {
				return jsonNodes.get("timestamp_ms").asLong();
			}
		}).name("Timestamp extractor");

	// filter out records without lang field
	DataStream<ObjectNode> tweetsWithLang = inputStream.filter(jsonNode -> jsonNode.has("user") && jsonNode.get("user").has("lang")).name("Filter records without 'lang' field");

	// select only lang = "en" tweets
	DataStream<ObjectNode> englishTweets = tweetsWithLang.filter(jsonNode -> jsonNode.get("user").get("lang").asText().equals("en")).name("Select 'lang'=en tweets");

	// write to file system
	RollingSink<ObjectNode> rollingSink = new RollingSink<>(params.get("sinkPath", "/home/robert/flink-workdir/flink-streaming-etl/rolling-sink"));
	rollingSink.setBucketer(new DateTimeBucketer("yyyy-MM-dd-HH-mm")); // do a bucket for each minute
	englishTweets.addSink(rollingSink).name("Rolling FileSystem Sink");

	// build aggregates (count per language) using window (10 seconds tumbling):
	DataStream<Tuple3<Long, String, Long>> languageCounts = tweetsWithLang.keyBy(jsonNode -> jsonNode.get("user").get("lang").asText())
		.timeWindow(Time.seconds(10))
		.apply(new Tuple3<>(0L, "", 0L), new JsonFoldCounter(), new CountEmitter()).name("Count per Langauage (10 seconds tumbling)");

	// write window aggregate to ElasticSearch
	List<InetSocketAddress> transportNodes = ImmutableList.of(new InetSocketAddress(InetAddress.getByName("localhost"), 9300));
	ElasticsearchSink<Tuple3<Long, String, Long>> elasticsearchSink = new ElasticsearchSink<>(params.toMap(), transportNodes, new ESRequest());

	languageCounts.addSink(elasticsearchSink).name("ElasticSearch2 Sink");

	// word-count on the tweet stream
	DataStream<Tuple2<Date, List<Tuple2<String, Long>>>> topWordCount = tweetsWithLang
		// get text from tweets
		.map(tweet -> tweet.get("text").asText()).name("Get text from Tweets")
		// split text into (word, 1) tuples
		.flatMap(new FlatMapFunction<String, Tuple2<String, Long>>() {
			@Override
			public void flatMap(String s, Collector<Tuple2<String, Long>> collector) throws Exception {
				String[] splits = s.split(" ");
				for (String sp : splits) {
					collector.collect(new Tuple2<>(sp, 1L));
				}
			}
		}).name("Tokenize words")
		// group by word
		.keyBy(0)
		// build 1 min windows, compute every 10 seconds --> count word frequency
		.timeWindow(Time.minutes(1L), Time.seconds(10L)).apply(new WordCountingWindow()).name("Count word frequency (1 min, 10 sec sliding window)")
		// build top n every 10 seconds
		.timeWindowAll(Time.seconds(10L)).apply(new TopNWords(10)).name("TopN Window (10s)");

	// write top Ns to Kafka topic
	topWordCount.addSink(new FlinkKafkaProducer09<>(params.getRequired("wc-topic"), new ListSerSchema(), params.getProperties())).name("Write topN to Kafka");

	env.execute("Streaming ETL");

}
 
开发者ID:rmetzger,项目名称:flink-streaming-etl,代码行数:82,代码来源:StreamingETL.java

示例7: main

import org.apache.flink.api.java.utils.ParameterTool; //导入依赖的package包/类
public static void main(String args[]) throws Exception{

        StreamExecutionEnvironment env =
                StreamExecutionEnvironment.getExecutionEnvironment();

        ParameterTool parameterTool = ParameterTool.fromArgs(args);

        DataStream<String> messageStream = env
                .addSource(new FlinkKafkaConsumer082 <>(
                parameterTool.getRequired("topic"),
                new SimpleStringSchema(),
                parameterTool.getProperties()));

        // print() will write the contents of the stream to the TaskManager's standard out stream
        // the rebelance call is causing a repartitioning of the data so that all machines
        // see the messages (for example in cases when "num kafka partitions" < "num flink operators"
        messageStream.rebalance().map(new MapFunction<String, String>() {
            private static final long serialVersionUID = -6867736771747690202L;

            @Override
            public String map(String value) throws Exception {
                return "Kafka and Flink says: " + value;
            }
        }).print();

        env.execute();


    }
 
开发者ID:jdc91,项目名称:StreamProcessingInfrastructure,代码行数:30,代码来源:FlinkPoc.java

示例8: main

import org.apache.flink.api.java.utils.ParameterTool; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
    ParameterTool parameters = ParameterTool.fromArgs(args);

    StreamExecutionEnvironment environment = new ParametersExecutionEnvironmentFactory(parameters)
            .createExecutionEnvironment();

    DataStream<String> stream = environment
            .addSource(new FlinkKafkaConsumerFactory(parameters).createConsumer())
            .name("Consume messages from Kafka.")
            .rebalance();

    DataStream<Tuple2<String, String>> events = stream
            .flatMap(new EventJsonFlapMap())
            .name("Run Eventor, serialize event and produce tuple.");

    ElasticsearchSink sink = new ElasticsearchEventSinkFactory(parameters).create();

    events.addSink(sink)
            .name("Push event to Elasticsearch.");

    environment.execute("Ingest events from Kafka and index in Elasticsearch.");
}
 
开发者ID:webaio,项目名称:processor,代码行数:23,代码来源:IngestEventsElasticsearchJob.java

示例9: main

import org.apache.flink.api.java.utils.ParameterTool; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
    ParameterTool tool = ParameterTool.fromArgs(args);

    String topic = tool.getRequired("kafka.topic");

    Properties kafkaConsumerProps = new Properties();
    kafkaConsumerProps.setProperty("bootstrap.servers", tool.getRequired("kafkabroker"));
    kafkaConsumerProps.setProperty("group.id", tool.getRequired("kafka.groupId"));
    kafkaConsumerProps.setProperty("zookeeper.connect", tool.get("zookeeper.host", "localhost:2181"));
    kafkaConsumerProps.setProperty("auto.offset.reset", tool.getBoolean("from-beginning", false) ? "smallest" : "largest");

    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

    DataStream<String> textStream = env
            .addSource(new FlinkKafkaConsumer08<>(topic, new SimpleStringSchema(), kafkaConsumerProps));

    textStream.flatMap(new LineSplitter())
        .keyBy(0)
        .sum(1)
        .print();

    env.execute("WordCount from Kafka Example");
}
 
开发者ID:godatadriven,项目名称:flink-streaming-xke,代码行数:24,代码来源:KafkaStreamingWordCount.java

示例10: main

import org.apache.flink.api.java.utils.ParameterTool; //导入依赖的package包/类
public static void main(String[] args) {
	try {
		// startup checks and logging
		EnvironmentInformation.logEnvironmentInfo(LOG, "ZooKeeper Quorum Peer", args);
		
		final ParameterTool params = ParameterTool.fromArgs(args);
		final String zkConfigFile = params.getRequired("zkConfigFile");
		final int peerId = params.getInt("peerId");

		// Run quorum peer
		runFlinkZkQuorumPeer(zkConfigFile, peerId);
	}
	catch (Throwable t) {
		LOG.error("Error running ZooKeeper quorum peer: " + t.getMessage(), t);
		System.exit(-1);
	}
}
 
开发者ID:axbaretto,项目名称:flink,代码行数:18,代码来源:FlinkZooKeeperQuorumPeer.java

示例11: main

import org.apache.flink.api.java.utils.ParameterTool; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
	ParameterTool parameterTool = ParameterTool.fromArgs(args);
	if (parameterTool.getNumberOfParameters() < 2) {
		System.out.println("Missing parameters!");
		System.out.println("Usage: Kafka --topic <topic> --bootstrap.servers <kafka brokers>");
		return;
	}

	StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
	env.getConfig().disableSysoutLogging();
	env.getConfig().setRestartStrategy(RestartStrategies.fixedDelayRestart(4, 10000));

	// very simple data generator
	DataStream<String> messageStream = env.addSource(new SourceFunction<String>() {
		private static final long serialVersionUID = 6369260445318862378L;
		public boolean running = true;

		@Override
		public void run(SourceContext<String> ctx) throws Exception {
			long i = 0;
			while (this.running) {
				ctx.collect("Element - " + i++);
				Thread.sleep(500);
			}
		}

		@Override
		public void cancel() {
			running = false;
		}
	});

	// write data into Kafka
	messageStream.addSink(new FlinkKafkaProducer08<>(parameterTool.getRequired("topic"), new SimpleStringSchema(), parameterTool.getProperties()));

	env.execute("Write into Kafka example");
}
 
开发者ID:axbaretto,项目名称:flink,代码行数:38,代码来源:WriteIntoKafka.java

示例12: main

import org.apache.flink.api.java.utils.ParameterTool; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
	ParameterTool pt = ParameterTool.fromArgs(args);

	StreamExecutionEnvironment see = StreamExecutionEnvironment.getExecutionEnvironment();
	see.setParallelism(1);

	DataStream<String> simpleStringStream = see.addSource(new EventsGenerator());

	Properties kinesisProducerConfig = new Properties();
	kinesisProducerConfig.setProperty(AWSConfigConstants.AWS_REGION, pt.getRequired("region"));
	kinesisProducerConfig.setProperty(AWSConfigConstants.AWS_ACCESS_KEY_ID, pt.getRequired("accessKey"));
	kinesisProducerConfig.setProperty(AWSConfigConstants.AWS_SECRET_ACCESS_KEY, pt.getRequired("secretKey"));

	FlinkKinesisProducer<String> kinesis = new FlinkKinesisProducer<>(
			new SimpleStringSchema(), kinesisProducerConfig);

	kinesis.setFailOnError(true);
	kinesis.setDefaultStream("flink-test");
	kinesis.setDefaultPartition("0");

	simpleStringStream.addSink(kinesis);

	see.execute();
}
 
开发者ID:axbaretto,项目名称:flink,代码行数:25,代码来源:ProduceIntoKinesis.java

示例13: main

import org.apache.flink.api.java.utils.ParameterTool; //导入依赖的package包/类
public static void main(String[] args) throws Exception {
	ParameterTool params = ParameterTool.fromArgs(args);

	// define the dataflow
	StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
	env.setParallelism(2);
	env.setRestartStrategy(RestartStrategies.fixedDelayRestart(10, 1000));
	env.readFileStream("input/", 60000, FileMonitoringFunction.WatchType.ONLY_NEW_FILES)
		.addSink(new DiscardingSink<String>());

	// generate a job graph
	final JobGraph jobGraph = env.getStreamGraph().getJobGraph();
	File jobGraphFile = new File(params.get("output", "job.graph"));
	try (FileOutputStream output = new FileOutputStream(jobGraphFile);
		ObjectOutputStream obOutput = new ObjectOutputStream(output)){
		obOutput.writeObject(jobGraph);
	}
}
 
开发者ID:axbaretto,项目名称:flink,代码行数:19,代码来源:StreamingNoop.java

示例14: configure

import org.apache.flink.api.java.utils.ParameterTool; //导入依赖的package包/类
@Override
public void configure(ParameterTool parameterTool) {
	if (hasDefaultValue && !parameterTool.has(name)) {
		// skip checks for min and max when using default value
		value = defaultValue;
	} else {
		value = parameterTool.getLong(name);

		if (hasMinimumValue) {
			Util.checkParameter(value >= minimumValue,
				name + " must be greater than or equal to " + minimumValue);
		}

		if (hasMaximumValue) {
			Util.checkParameter(value <= maximumValue,
				name + " must be less than or equal to " + maximumValue);
		}
	}
}
 
开发者ID:axbaretto,项目名称:flink,代码行数:20,代码来源:LongParameter.java

示例15: configure

import org.apache.flink.api.java.utils.ParameterTool; //导入依赖的package包/类
@Override
public void configure(ParameterTool parameterTool) {
	if (!parameterTool.has("iterations") && !parameterTool.has("convergence_threshold")) {
		// no configuration so use default iterations and maximum threshold
		value.iterations = defaultIterations;
		value.convergenceThreshold = Double.MAX_VALUE;
	} else {
		// use configured values and maximum default for unset values
		value.iterations = parameterTool.getInt("iterations", Integer.MAX_VALUE);
		Util.checkParameter(value.iterations > 0,
			"iterations must be greater than zero");

		value.convergenceThreshold = parameterTool.getDouble("convergence_threshold", Double.MAX_VALUE);
		Util.checkParameter(value.convergenceThreshold > 0,
			"convergence threshold must be greater than zero");
	}
}
 
开发者ID:axbaretto,项目名称:flink,代码行数:18,代码来源:IterationConvergence.java


注:本文中的org.apache.flink.api.java.utils.ParameterTool类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。