当前位置: 首页>>代码示例>>Java>>正文


Java TupleTypeInfo类代码示例

本文整理汇总了Java中org.apache.flink.api.java.typeutils.TupleTypeInfo的典型用法代码示例。如果您正苦于以下问题:Java TupleTypeInfo类的具体用法?Java TupleTypeInfo怎么用?Java TupleTypeInfo使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


TupleTypeInfo类属于org.apache.flink.api.java.typeutils包,在下文中一共展示了TupleTypeInfo类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: getAnomalySteam

import org.apache.flink.api.java.typeutils.TupleTypeInfo; //导入依赖的package包/类
public DataStream<Tuple2<K, AnomalyResult>> getAnomalySteam(DataStream<V> ds, KeySelector<V, K> keySelector , Time window) {

        KeyedStream<V, K> keyedInput = ds
                .keyBy(keySelector);

         TypeInformation<Tuple2<K,Tuple4<Double,Double,Long,Long>>> resultType = (TypeInformation) new TupleTypeInfo<>(Tuple2.class,
                new TypeInformation[] {keyedInput.getKeyType(), new TupleTypeInfo(Tuple4.class,
                        BasicTypeInfo.DOUBLE_TYPE_INFO, BasicTypeInfo.DOUBLE_TYPE_INFO, BasicTypeInfo.LONG_TYPE_INFO,BasicTypeInfo.LONG_TYPE_INFO)});

        Tuple2<K,Tuple4<Double,Double,Long,Long>> init= new Tuple2<>(null,new Tuple4<>(0d,0d,0l,0l));
        KeyedStream<Tuple2<K,Tuple4<Double,Double,Long,Long>>, Tuple> kPreStream = keyedInput
                .timeWindow(window)
                .apply(init, new CountWindFold<>(keySelector, window, resultType),new WindowTimeExtractor(resultType))
                .keyBy(0);

        return kPreStream.flatMap(afm);
    }
 
开发者ID:sics-dna,项目名称:isc4flink,代码行数:18,代码来源:NormalFreqAnomaly.java

示例2: getAnomalySteam

import org.apache.flink.api.java.typeutils.TupleTypeInfo; //导入依赖的package包/类
public DataStream<Tuple2<K, AnomalyResult>> getAnomalySteam(DataStream<V> ds, KeySelector<V, K> keySelector , KeySelector<V,Double> valueSelector, Time window) {

        KeyedStream<V, K> keyedInput = ds
                .keyBy(keySelector);

         TypeInformation<Tuple2<K,Tuple4<Double,Double,Long,Long>>> resultType = (TypeInformation) new TupleTypeInfo<>(Tuple2.class,
                new TypeInformation[] {keyedInput.getKeyType(), new TupleTypeInfo(Tuple4.class,
                        BasicTypeInfo.DOUBLE_TYPE_INFO, BasicTypeInfo.DOUBLE_TYPE_INFO, BasicTypeInfo.LONG_TYPE_INFO,BasicTypeInfo.LONG_TYPE_INFO)});

        Tuple2<K,Tuple4<Double,Double,Long,Long>> init= new Tuple2<>(null,new Tuple4<>(0d,0d,0l,0l));
        KeyedStream<Tuple2<K,Tuple4<Double,Double,Long,Long>>, Tuple> kPreStream = keyedInput
                .timeWindow(window)
                .apply(init, new CountSumFold<>(keySelector, valueSelector, resultType), new WindowTimeExtractor(resultType))
                .keyBy(0);

        return kPreStream.flatMap(afm);
    }
 
开发者ID:sics-dna,项目名称:isc4flink,代码行数:18,代码来源:NormalValueAnomaly.java

示例3: getAnomalySteam

import org.apache.flink.api.java.typeutils.TupleTypeInfo; //导入依赖的package包/类
public DataStream<Tuple3<K, AnomalyResult, RV>> getAnomalySteam(DataStream<V> ds, KeySelector<V, K> keySelector, KeySelector<V,Double> valueSelector, PayloadFold<V, RV> valueFold, Time window) {

        KeyedStream<V, K> keyedInput = ds
                .keyBy(keySelector);

        TypeInformation<Object> foldResultType = TypeExtractor.getUnaryOperatorReturnType(valueFold,
                PayloadFold.class,
                false,
                false,
                ds.getType(),
                "PayloadFold",
                false);


        TypeInformation<Tuple3<K,Tuple4<Double,Double,Long,Long>,RV>> resultType = (TypeInformation) new TupleTypeInfo<>(Tuple3.class,
                new TypeInformation[] {keyedInput.getKeyType(), new TupleTypeInfo(Tuple4.class,
                        BasicTypeInfo.DOUBLE_TYPE_INFO, BasicTypeInfo.DOUBLE_TYPE_INFO, BasicTypeInfo.LONG_TYPE_INFO,BasicTypeInfo.LONG_TYPE_INFO), foldResultType});

        Tuple3<K,Tuple4<Double,Double,Long,Long>, RV> init= new Tuple3<>(null,new Tuple4<>(0d,0d,0l,0l), valueFold.getInit());
        KeyedStream<Tuple3<K,Tuple4<Double,Double,Long,Long>,RV>, Tuple> kPreStream = keyedInput
                .timeWindow(window)
                .apply(init, new ExtCountSumFold<>(keySelector,valueSelector,valueFold, resultType),new ExtWindowTimeExtractor(resultType))
                .keyBy(0);

        return kPreStream.flatMap(afm);
    }
 
开发者ID:sics-dna,项目名称:isc4flink,代码行数:27,代码来源:ExtPoissonValueAnomaly.java

示例4: testStandardTupleKeys

import org.apache.flink.api.java.typeutils.TupleTypeInfo; //导入依赖的package包/类
@Test
public void testStandardTupleKeys() {
	TupleTypeInfo<Tuple7<String, String, String, String, String, String, String>> typeInfo = new TupleTypeInfo<>(
			BasicTypeInfo.STRING_TYPE_INFO,BasicTypeInfo.STRING_TYPE_INFO,BasicTypeInfo.STRING_TYPE_INFO,BasicTypeInfo.STRING_TYPE_INFO,BasicTypeInfo.STRING_TYPE_INFO,
			BasicTypeInfo.STRING_TYPE_INFO,BasicTypeInfo.STRING_TYPE_INFO);
	
	ExpressionKeys<Tuple7<String, String, String, String, String, String, String>> ek;
	
	for( int i = 1; i < 8; i++) {
		int[] ints = new int[i];
		for( int j = 0; j < i; j++) {
			ints[j] = j;
		}
		int[] inInts = Arrays.copyOf(ints, ints.length); // copy, just to make sure that the code is not cheating by changing the ints.
		ek = new ExpressionKeys<>(inInts, typeInfo);
		Assert.assertArrayEquals(ints, ek.computeLogicalKeyPositions());
		Assert.assertEquals(ints.length, ek.computeLogicalKeyPositions().length);
		
		ArrayUtils.reverse(ints);
		inInts = Arrays.copyOf(ints, ints.length);
		ek = new ExpressionKeys<>(inInts, typeInfo);
		Assert.assertArrayEquals(ints, ek.computeLogicalKeyPositions());
		Assert.assertEquals(ints.length, ek.computeLogicalKeyPositions().length);
	}
}
 
开发者ID:axbaretto,项目名称:flink,代码行数:26,代码来源:ExpressionKeysTest.java

示例5: getAnomalySteam

import org.apache.flink.api.java.typeutils.TupleTypeInfo; //导入依赖的package包/类
public DataStream<Tuple3<K, AnomalyResult, RV>> getAnomalySteam(DataStream<V> ds, KeySelector<V, K> keySelector, PayloadFold<V, RV> valueFold, Time window) {

        KeyedStream<V, K> keyedInput = ds
                .keyBy(keySelector);

        TypeInformation<Object> foldResultType = TypeExtractor.getUnaryOperatorReturnType(valueFold,
                PayloadFold.class,
                false,
                false,
                ds.getType(),
                "PayloadFold",
                false);

        TypeInformation<Tuple3<K,Tuple4<Double,Double,Long,Long>,RV>> resultType = (TypeInformation) new TupleTypeInfo<>(Tuple3.class,
                new TypeInformation[] {keyedInput.getKeyType(), new TupleTypeInfo(Tuple4.class,
                        BasicTypeInfo.DOUBLE_TYPE_INFO, BasicTypeInfo.DOUBLE_TYPE_INFO, BasicTypeInfo.LONG_TYPE_INFO,BasicTypeInfo.LONG_TYPE_INFO), foldResultType});

        Tuple3<K,Tuple4<Double,Double,Long,Long>, RV> init= new Tuple3<>(null,new Tuple4<>(0d,0d,0l,0l), valueFold.getInit());
        KeyedStream<Tuple3<K,Tuple4<Double,Double,Long,Long>,RV>, Tuple> kPreStream = keyedInput
                .timeWindow(window)
                .apply(init, new ExtCountWindFold<>(keySelector,valueFold, window, resultType),new ExtWindowTimeExtractor(resultType))
                .keyBy(0);

        return kPreStream.flatMap(afm);
    }
 
开发者ID:sics-dna,项目名称:isc4flink,代码行数:26,代码来源:ExtExponentialFreqAnomaly.java

示例6: getAnomalySteam

import org.apache.flink.api.java.typeutils.TupleTypeInfo; //导入依赖的package包/类
public DataStream<Tuple2<K, AnomalyResult>> getAnomalySteam(DataStream<V> ds, KeySelector<V, K> keySelector,  Time window) {

        KeyedStream<V, K> keyedInput = ds
                .keyBy(keySelector);

        TypeInformation<Tuple2<K,Tuple4<Double,Double,Long,Long>>> resultType = (TypeInformation) new TupleTypeInfo<>(Tuple2.class,
                new TypeInformation[] {keyedInput.getKeyType(), new TupleTypeInfo(Tuple4.class,
                        BasicTypeInfo.DOUBLE_TYPE_INFO, BasicTypeInfo.DOUBLE_TYPE_INFO, BasicTypeInfo.LONG_TYPE_INFO,BasicTypeInfo.LONG_TYPE_INFO)});

        Tuple2<K,Tuple4<Double,Double,Long,Long>> init= new Tuple2<>(null,new Tuple4<>(0d,0d,0l,0l));
        KeyedStream<Tuple2<K,Tuple4<Double,Double,Long,Long>>, Tuple> kPreStream = keyedInput
                .timeWindow(window)
                .apply(init, new CountWindFold<>(keySelector, window, resultType),new WindowTimeExtractor(resultType))
                .keyBy(0);


        return kPreStream.flatMap(afm);
    }
 
开发者ID:sics-dna,项目名称:isc4flink,代码行数:19,代码来源:ExponentialFreqAnomaly.java

示例7: getAnomalySteam

import org.apache.flink.api.java.typeutils.TupleTypeInfo; //导入依赖的package包/类
public DataStream<Tuple3<K, AnomalyResult, RV>> getAnomalySteam(DataStream<V> ds, KeySelector<V, K> keySelector, KeySelector<V,Double> valueSelector, PayloadFold<V, RV> valueFold, Time window) {

        KeyedStream<V, K> keyedInput = ds
                .keyBy(keySelector);

        TypeInformation<Object> foldResultType = TypeExtractor.getUnaryOperatorReturnType(valueFold,
                PayloadFold.class,
                false,
                false,
                ds.getType(),
                "PayloadFold",
                false);

        TypeInformation<Tuple3<K,Tuple4<Double,Double,Long,Long>,RV>> resultType = (TypeInformation) new TupleTypeInfo<>(Tuple3.class,
                new TypeInformation[] {keyedInput.getKeyType(), new TupleTypeInfo(Tuple4.class,
                        BasicTypeInfo.DOUBLE_TYPE_INFO, BasicTypeInfo.DOUBLE_TYPE_INFO, BasicTypeInfo.LONG_TYPE_INFO,BasicTypeInfo.LONG_TYPE_INFO), foldResultType});

        Tuple3<K,Tuple4<Double,Double,Long,Long>, RV> init= new Tuple3<>(null,new Tuple4<>(0d,0d,0l,0l), valueFold.getInit());
        KeyedStream<Tuple3<K,Tuple4<Double,Double,Long,Long>,RV>, Tuple> kPreStream = keyedInput
                .timeWindow(window)
                .apply(init, new ExtCountSumFold<>(keySelector,valueSelector,valueFold, resultType),new ExtWindowTimeExtractor<>(resultType))
                .keyBy(0);

        return kPreStream.flatMap(afm);
    }
 
开发者ID:sics-dna,项目名称:isc4flink,代码行数:26,代码来源:ExtExponentialValueAnomaly.java

示例8: tupleType

import org.apache.flink.api.java.typeutils.TupleTypeInfo; //导入依赖的package包/类
/**
 * Configures the reader to read the CSV data and parse it to the given type. The type must be a subclass of
 * {@link Tuple}. The type information for the fields is obtained from the type class. The type
 * consequently needs to specify all generic field types of the tuple.
 *
 * @param targetType The class of the target type, needs to be a subclass of Tuple.
 * @return The DataSet representing the parsed CSV data.
 */
public <T extends Tuple> DataSource<T> tupleType(Class<T> targetType) {
	Preconditions.checkNotNull(targetType, "The target type class must not be null.");
	if (!Tuple.class.isAssignableFrom(targetType)) {
		throw new IllegalArgumentException("The target type must be a subclass of " + Tuple.class.getName());
	}

	@SuppressWarnings("unchecked")
	TupleTypeInfo<T> typeInfo = (TupleTypeInfo<T>) TypeExtractor.createTypeInfo(targetType);
	CsvInputFormat<T> inputFormat = new TupleCsvInputFormat<T>(path, this.lineDelimiter, this.fieldDelimiter, typeInfo, this.includedMask);

	Class<?>[] classes = new Class<?>[typeInfo.getArity()];
	for (int i = 0; i < typeInfo.getArity(); i++) {
		classes[i] = typeInfo.getTypeAt(i).getTypeClass();
	}

	configureInputFormat(inputFormat);
	return new DataSource<T>(executionContext, inputFormat, typeInfo, Utils.getCallLocationName());
}
 
开发者ID:axbaretto,项目名称:flink,代码行数:27,代码来源:CsvReader.java

示例9: testAsFromAndToTuple

import org.apache.flink.api.java.typeutils.TupleTypeInfo; //导入依赖的package包/类
@Test
public void testAsFromAndToTuple() throws Exception {
	ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
	BatchTableEnvironment tableEnv = TableEnvironment.getTableEnvironment(env, config());

	Table table = tableEnv
		.fromDataSet(CollectionDataSets.get3TupleDataSet(env), "a, b, c")
		.select("a, b, c");

	TypeInformation<?> ti = new TupleTypeInfo<Tuple3<Integer, Long, String>>(
		BasicTypeInfo.INT_TYPE_INFO,
		BasicTypeInfo.LONG_TYPE_INFO,
		BasicTypeInfo.STRING_TYPE_INFO);

	DataSet<?> ds = tableEnv.toDataSet(table, ti);
	List<?> results = ds.collect();
	String expected = "(1,1,Hi)\n" + "(2,2,Hello)\n" + "(3,2,Hello world)\n" +
		"(4,3,Hello world, how are you?)\n" + "(5,3,I am fine.)\n" + "(6,3,Luke Skywalker)\n" +
		"(7,4,Comment#1)\n" + "(8,4,Comment#2)\n" + "(9,4,Comment#3)\n" + "(10,4,Comment#4)\n" +
		"(11,5,Comment#5)\n" + "(12,5,Comment#6)\n" + "(13,5,Comment#7)\n" +
		"(14,5,Comment#8)\n" + "(15,5,Comment#9)\n" + "(16,6,Comment#10)\n" +
		"(17,6,Comment#11)\n" + "(18,6,Comment#12)\n" + "(19,6,Comment#13)\n" +
		"(20,6,Comment#14)\n" + "(21,6,Comment#15)\n";
	compareResultAsText(results, expected);
}
 
开发者ID:axbaretto,项目名称:flink,代码行数:26,代码来源:FromDataSetITCase.java

示例10: getSmall5TupleDataSet

import org.apache.flink.api.java.typeutils.TupleTypeInfo; //导入依赖的package包/类
public static DataSet<Tuple5<IntValue, LongValue, IntValue, StringValue, LongValue>> getSmall5TupleDataSet(ExecutionEnvironment env) {
	List<Tuple5<IntValue, LongValue, IntValue, StringValue, LongValue>> data = new ArrayList<>();

	data.add(new Tuple5<>(new IntValue(1), new LongValue(1l), new IntValue(0), new StringValue("Hallo"), new LongValue(1l)));
	data.add(new Tuple5<>(new IntValue(2), new LongValue(2l), new IntValue(1), new StringValue("Hallo Welt"), new LongValue(2l)));
	data.add(new Tuple5<>(new IntValue(2), new LongValue(3l), new IntValue(2), new StringValue("Hallo Welt wie"), new LongValue(1l)));

	Collections.shuffle(data);

	TupleTypeInfo<Tuple5<IntValue, LongValue, IntValue, StringValue, LongValue>> type = new
		TupleTypeInfo<>(
			ValueTypeInfo.INT_VALUE_TYPE_INFO,
			ValueTypeInfo.LONG_VALUE_TYPE_INFO,
			ValueTypeInfo.INT_VALUE_TYPE_INFO,
			ValueTypeInfo.STRING_VALUE_TYPE_INFO,
			ValueTypeInfo.LONG_VALUE_TYPE_INFO
	);

	return env.fromCollection(data, type);
}
 
开发者ID:axbaretto,项目名称:flink,代码行数:21,代码来源:ValueCollectionDataSets.java

示例11: getGroupSortedNestedTupleDataSet2

import org.apache.flink.api.java.typeutils.TupleTypeInfo; //导入依赖的package包/类
public static DataSet<Tuple3<Tuple2<IntValue, IntValue>, StringValue, IntValue>> getGroupSortedNestedTupleDataSet2(ExecutionEnvironment env) {
	List<Tuple3<Tuple2<IntValue, IntValue>, StringValue, IntValue>> data = new ArrayList<>();

	data.add(new Tuple3<>(new Tuple2<IntValue, IntValue>(new IntValue(1), new IntValue(3)), new StringValue("a"), new IntValue(2)));
	data.add(new Tuple3<>(new Tuple2<IntValue, IntValue>(new IntValue(1), new IntValue(2)), new StringValue("a"), new IntValue(1)));
	data.add(new Tuple3<>(new Tuple2<IntValue, IntValue>(new IntValue(2), new IntValue(1)), new StringValue("a"), new IntValue(3)));
	data.add(new Tuple3<>(new Tuple2<IntValue, IntValue>(new IntValue(2), new IntValue(2)), new StringValue("b"), new IntValue(4)));
	data.add(new Tuple3<>(new Tuple2<IntValue, IntValue>(new IntValue(3), new IntValue(3)), new StringValue("c"), new IntValue(5)));
	data.add(new Tuple3<>(new Tuple2<IntValue, IntValue>(new IntValue(3), new IntValue(6)), new StringValue("c"), new IntValue(6)));
	data.add(new Tuple3<>(new Tuple2<IntValue, IntValue>(new IntValue(4), new IntValue(9)), new StringValue("c"), new IntValue(7)));

	TupleTypeInfo<Tuple3<Tuple2<IntValue, IntValue>, StringValue, IntValue>> type = new
		TupleTypeInfo<>(
			new TupleTypeInfo<Tuple2<IntValue, IntValue>>(ValueTypeInfo.INT_VALUE_TYPE_INFO, ValueTypeInfo.INT_VALUE_TYPE_INFO),
			ValueTypeInfo.STRING_VALUE_TYPE_INFO,
			ValueTypeInfo.INT_VALUE_TYPE_INFO
	);

	return env.fromCollection(data, type);
}
 
开发者ID:axbaretto,项目名称:flink,代码行数:21,代码来源:ValueCollectionDataSets.java

示例12: getSmall5TupleDataSet

import org.apache.flink.api.java.typeutils.TupleTypeInfo; //导入依赖的package包/类
public static DataSet<Tuple5<Integer, Long, Integer, String, Long>> getSmall5TupleDataSet(ExecutionEnvironment env) {

		List<Tuple5<Integer, Long, Integer, String, Long>> data = new ArrayList<>();
		data.add(new Tuple5<>(1, 1L, 0, "Hallo", 1L));
		data.add(new Tuple5<>(2, 2L, 1, "Hallo Welt", 2L));
		data.add(new Tuple5<>(2, 3L, 2, "Hallo Welt wie", 1L));

		Collections.shuffle(data);

		TupleTypeInfo<Tuple5<Integer, Long, Integer, String, Long>> type = new TupleTypeInfo<>(
				BasicTypeInfo.INT_TYPE_INFO,
				BasicTypeInfo.LONG_TYPE_INFO,
				BasicTypeInfo.INT_TYPE_INFO,
				BasicTypeInfo.STRING_TYPE_INFO,
				BasicTypeInfo.LONG_TYPE_INFO
		);

		return env.fromCollection(data, type);
	}
 
开发者ID:axbaretto,项目名称:flink,代码行数:20,代码来源:CollectionDataSets.java

示例13: getGroupSortedNestedTupleDataSet2

import org.apache.flink.api.java.typeutils.TupleTypeInfo; //导入依赖的package包/类
public static DataSet<Tuple3<Tuple2<Integer, Integer>, String, Integer>> getGroupSortedNestedTupleDataSet2(ExecutionEnvironment env) {

		List<Tuple3<Tuple2<Integer, Integer>, String, Integer>> data = new ArrayList<>();
		data.add(new Tuple3<>(new Tuple2<>(1, 3), "a", 2));
		data.add(new Tuple3<>(new Tuple2<>(1, 2), "a", 1));
		data.add(new Tuple3<>(new Tuple2<>(2, 1), "a", 3));
		data.add(new Tuple3<>(new Tuple2<>(2, 2), "b", 4));
		data.add(new Tuple3<>(new Tuple2<>(3, 3), "c", 5));
		data.add(new Tuple3<>(new Tuple2<>(3, 6), "c", 6));
		data.add(new Tuple3<>(new Tuple2<>(4, 9), "c", 7));

		TupleTypeInfo<Tuple3<Tuple2<Integer, Integer>, String, Integer>> type = new TupleTypeInfo<>(
				new TupleTypeInfo<Tuple2<Integer, Integer>>(BasicTypeInfo.INT_TYPE_INFO, BasicTypeInfo.INT_TYPE_INFO),
				BasicTypeInfo.STRING_TYPE_INFO,
				BasicTypeInfo.INT_TYPE_INFO
		);

		return env.fromCollection(data, type);
	}
 
开发者ID:axbaretto,项目名称:flink,代码行数:20,代码来源:CollectionDataSets.java

示例14: getTuple2WithByteArrayDataSet

import org.apache.flink.api.java.typeutils.TupleTypeInfo; //导入依赖的package包/类
public static DataSet<Tuple2<byte[], Integer>> getTuple2WithByteArrayDataSet(ExecutionEnvironment env) {
	List<Tuple2<byte[], Integer>> data = new ArrayList<>();
	data.add(new Tuple2<>(new byte[]{0, 4}, 1));
	data.add(new Tuple2<>(new byte[]{2, 0}, 1));
	data.add(new Tuple2<>(new byte[]{2, 0, 4}, 4));
	data.add(new Tuple2<>(new byte[]{2, 1}, 3));
	data.add(new Tuple2<>(new byte[]{0}, 0));
	data.add(new Tuple2<>(new byte[]{2, 0}, 1));
			
	TupleTypeInfo<Tuple2<byte[], Integer>> type = new TupleTypeInfo<>(
			PrimitiveArrayTypeInfo.BYTE_PRIMITIVE_ARRAY_TYPE_INFO,
			BasicTypeInfo.INT_TYPE_INFO
	);
	
	return env.fromCollection(data, type);
}
 
开发者ID:axbaretto,项目名称:flink,代码行数:17,代码来源:CollectionDataSets.java

示例15: testIdentityMapWithMissingTypesAndTypeInformationTypeHint

import org.apache.flink.api.java.typeutils.TupleTypeInfo; //导入依赖的package包/类
@Test
public void testIdentityMapWithMissingTypesAndTypeInformationTypeHint() throws Exception {
	final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment();
	env.getConfig().disableSysoutLogging();

	DataSet<Tuple3<Integer, Long, String>> ds = CollectionDataSets.getSmall3TupleDataSet(env);
	DataSet<Tuple3<Integer, Long, String>> identityMapDs = ds
		// all following generics get erased during compilation
		.map(new Mapper<Tuple3<Integer, Long, String>, Tuple3<Integer, Long, String>>())
		.returns(new TupleTypeInfo<Tuple3<Integer, Long, String>>(BasicTypeInfo.INT_TYPE_INFO, BasicTypeInfo.LONG_TYPE_INFO, BasicTypeInfo.STRING_TYPE_INFO));
	List<Tuple3<Integer, Long, String>> result = identityMapDs
		.collect();

	String expectedResult = "(2,2,Hello)\n" +
		"(3,2,Hello world)\n" +
		"(1,1,Hi)\n";

	compareResultAsText(result, expectedResult);
}
 
开发者ID:axbaretto,项目名称:flink,代码行数:20,代码来源:TypeHintITCase.java


注:本文中的org.apache.flink.api.java.typeutils.TupleTypeInfo类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。