本文整理汇总了Java中org.apache.commons.math3.util.CombinatoricsUtils类的典型用法代码示例。如果您正苦于以下问题:Java CombinatoricsUtils类的具体用法?Java CombinatoricsUtils怎么用?Java CombinatoricsUtils使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
CombinatoricsUtils类属于org.apache.commons.math3.util包,在下文中一共展示了CombinatoricsUtils类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: compute
import org.apache.commons.math3.util.CombinatoricsUtils; //导入依赖的package包/类
@Override
protected double compute(double value1, double value2) {
// special case for handling missing values
if (Double.isNaN(value1) || Double.isNaN(value2)) {
return Double.NaN;
}
if (value1 < 0 || value2 < 0) {
throw new FunctionInputException("expression_parser.function_non_negative", getFunctionName());
}
// This is the common definition for the case for k > n.
if (value2 > value1) {
return 0;
} else {
return CombinatoricsUtils.binomialCoefficientDouble((int) value1, (int) value2);
}
}
示例2: getCandidateIndices
import org.apache.commons.math3.util.CombinatoricsUtils; //导入依赖的package包/类
/**
* @param vector vector whose dot product with hashed vectors is to be maximized
* @return indices of partitions containing candidates to check
*/
int[] getCandidateIndices(float[] vector) {
int mainIndex = getIndexFor(vector);
// Simple cases
int numHashes = getNumHashes();
if (numHashes == maxBitsDiffering) {
return allIndices;
}
if (maxBitsDiffering == 0) {
return new int[] { mainIndex };
}
// Other cases
int howMany = 0;
for (int i = 0; i <= maxBitsDiffering; i++) {
howMany += (int) CombinatoricsUtils.binomialCoefficient(numHashes, i);
}
int[] result = new int[howMany];
System.arraycopy(candidateIndicesPrototype, 0, result, 0, howMany);
for (int i = 0; i < howMany; i++) {
result[i] ^= mainIndex;
}
return result;
}
示例3: doTestHashesBits
import org.apache.commons.math3.util.CombinatoricsUtils; //导入依赖的package包/类
private static void doTestHashesBits(double sampleRate, int numCores, int numHashes, int maxBitsDiffering) {
LocalitySensitiveHash lsh = new LocalitySensitiveHash(sampleRate, 10, numCores);
assertEquals(numHashes, lsh.getNumHashes());
assertEquals(1L << numHashes, lsh.getNumPartitions());
assertEquals(maxBitsDiffering, lsh.getMaxBitsDiffering());
if (sampleRate == 1.0) {
assertEquals(lsh.getMaxBitsDiffering(), lsh.getNumHashes());
}
long partitionsToTry = 0;
for (int i = 0; i <= maxBitsDiffering; i++) {
partitionsToTry += CombinatoricsUtils.binomialCoefficient(numHashes, i);
}
if (numHashes < LocalitySensitiveHash.MAX_HASHES) {
assertLessOrEqual((double) partitionsToTry / (1 << numHashes), sampleRate);
}
}
示例4: Orthogonality
import org.apache.commons.math3.util.CombinatoricsUtils; //导入依赖的package包/类
/**
* Tests if orthogonality relation regarding a fixed l holds true for all l between 0 and 5.
*/
@Test
@DisplayName("Test Orthogonality (l)")
public void testOrthogonalityL() {
final double dx = 1e-4;
for (int l1=0;l1<=5;l1++) {
for (int l2=0;l2<=5;l2++) {
for (int m=0;m<=l1 && m<=l2;m++) {
final AssociatedLegendrePolynomial alp1 = new AssociatedLegendrePolynomial(l1,m);
final AssociatedLegendrePolynomial alp2 = new AssociatedLegendrePolynomial(l2,m);
double result = 0.0;
final double expected = (2.0)/(2*l1+1) * ((double)CombinatoricsUtils.factorial(l1+m)/(double)CombinatoricsUtils.factorial(l1-m)) * MathHelper.kronecker(l1,l2);
for (double x = -1.0; x <= 1.0; x+=dx) {
result += (alp1.value(x) * alp2.value(x)) * dx;
}
assertEquals(expected, result, 1e-3);
}
}
}
}
示例5: taylor
import org.apache.commons.math3.util.CombinatoricsUtils; //导入依赖的package包/类
/** Evaluate Taylor expansion of a derivative structure.
* @param ds array holding the derivative structure
* @param dsOffset offset of the derivative structure in its array
* @param delta parameters offsets (Δx, Δy, ...)
* @return value of the Taylor expansion at x + Δx, y + Δy, ...
* @throws MathArithmeticException if factorials becomes too large
*/
public double taylor(final double[] ds, final int dsOffset, final double ... delta)
throws MathArithmeticException {
double value = 0;
for (int i = getSize() - 1; i >= 0; --i) {
final int[] orders = getPartialDerivativeOrders(i);
double term = ds[dsOffset + i];
for (int k = 0; k < orders.length; ++k) {
if (orders[k] > 0) {
try {
term *= FastMath.pow(delta[k], orders[k]) /
CombinatoricsUtils.factorial(orders[k]);
} catch (NotPositiveException e) {
// this cannot happen
throw new MathInternalError(e);
}
}
}
value += term;
}
return value;
}
示例6: fisherPValue
import org.apache.commons.math3.util.CombinatoricsUtils; //导入依赖的package包/类
/**
* Compute the p-value corresponding to the computed Fisher g-value.
* A lower value implies a pattern match, but a decision can only
* be made once a reasonable threshold is set.
*
* @return the p-value corresponding to the Fisher g-value test.
*/
private double fisherPValue() {
int N = periodogram.length;
double fisherG = fisherG();
int upperLimit = (int) Math.floor(1/fisherG);
double[] values = new double[upperLimit];
for(int k=0; k < upperLimit; k++) {
double binomialCo = CombinatoricsUtils.binomialCoefficientDouble(N, k+1);
values[k] = Math.pow(-1, k) * binomialCo * Math.pow((1-(k+1)*fisherG), N-1);
}
fisherPValue = new Sum().evaluate(values);
return fisherPValue;
}
示例7: BinomialModelFunctionGradient
import org.apache.commons.math3.util.CombinatoricsUtils; //导入依赖的package包/类
public BinomialModelFunctionGradient(double[] histogram, int trials, boolean zeroTruncated)
{
super(histogram, trials, zeroTruncated);
// We could ignore the first p value as it is always zero:
//p = Arrays.copyOfRange(p, 1, p.length);
// BUT then we would have to override the getP() method since this has
// an offset of 1 and assumes the index of p is X.
final int n = trials;
nC = new long[n + 1];
for (int k = 0; k <= n; k++)
{
nC[k] = CombinatoricsUtils.binomialCoefficient(n, k);
}
}
示例8: generate
import org.apache.commons.math3.util.CombinatoricsUtils; //导入依赖的package包/类
/**
* {@inheritDoc}
*/
@Override
public GaussianQuadratureData generate(int n) {
ArgChecker.isTrue(n > 0, "n > 0");
Pair<DoubleFunction1D, DoubleFunction1D>[] polynomials = JACOBI.getPolynomialsAndFirstDerivative(n, _alpha, _beta);
Pair<DoubleFunction1D, DoubleFunction1D> pair = polynomials[n];
DoubleFunction1D previous = polynomials[n - 1].getFirst();
DoubleFunction1D function = pair.getFirst();
DoubleFunction1D derivative = pair.getSecond();
double[] x = new double[n];
double[] w = new double[n];
double root = 0;
for (int i = 0; i < n; i++) {
double d = 2 * n + _c;
root = getInitialRootGuess(root, i, n, x);
root = ROOT_FINDER.getRoot(function, derivative, root);
x[i] = root;
w[i] =
GAMMA_FUNCTION.applyAsDouble(_alpha + n) * GAMMA_FUNCTION.applyAsDouble(_beta + n) /
CombinatoricsUtils.factorialDouble(n) / GAMMA_FUNCTION.applyAsDouble(n + _c + 1) * d *
Math.pow(2, _c)
/ (derivative.applyAsDouble(root) * previous.applyAsDouble(root));
}
return new GaussianQuadratureData(x, w);
}
示例9: generate
import org.apache.commons.math3.util.CombinatoricsUtils; //导入依赖的package包/类
/**
* {@inheritDoc}
*/
@Override
public GaussianQuadratureData generate(int n) {
ArgChecker.isTrue(n > 0);
Pair<DoubleFunction1D, DoubleFunction1D>[] polynomials = LAGUERRE.getPolynomialsAndFirstDerivative(n, _alpha);
Pair<DoubleFunction1D, DoubleFunction1D> pair = polynomials[n];
DoubleFunction1D p1 = polynomials[n - 1].getFirst();
DoubleFunction1D function = pair.getFirst();
DoubleFunction1D derivative = pair.getSecond();
double[] x = new double[n];
double[] w = new double[n];
double root = 0;
for (int i = 0; i < n; i++) {
root = ROOT_FINDER.getRoot(function, derivative, getInitialRootGuess(root, i, n, x));
x[i] = root;
w[i] =
-GAMMA_FUNCTION.applyAsDouble(_alpha + n) / CombinatoricsUtils.factorialDouble(n) /
(derivative.applyAsDouble(root) * p1.applyAsDouble(root));
}
return new GaussianQuadratureData(x, w);
}
示例10: calLogCompoundDens
import org.apache.commons.math3.util.CombinatoricsUtils; //导入依赖的package包/类
private static double calLogCompoundDens(RealVector betas, RealVector betaDens, int n, int k) {
double logComb = CombinatoricsUtils.binomialCoefficientLog(n,k);
int nBetas = betas.getDimension();
RealVector dens = new ArrayRealVector(nBetas);
for (int i = 0; i < nBetas; i++) {
dens.setEntry(i, betaDens.getEntry(i) * FastMath.pow(betas.getEntry(i), k)
* FastMath.pow(1 - betas.getEntry(i), n - k));
}
double prob = integSimpson(betas,dens);
double logProb=(prob==0)?-1000:FastMath.log(prob); // avoid -Inf
return logComb+logProb;
}
示例11: createRadialPolynomial
import org.apache.commons.math3.util.CombinatoricsUtils; //导入依赖的package包/类
/**
* Creates and returns a new radial polynomial (R_nm) given two moments.
*
* @param n 1st moment (order) of the radial polynomial.
* @param m 2nd moment (repetition) of the radial polynomial.
* @return PolynomialFunction representing R_nm
* @throws ArithmeticException If orders are to large and calculation of binomial coefficients fail.
*/
public static PolynomialFunction createRadialPolynomial(final int n, int m) {
m = Math.abs(m); /* Make sure that m is positive. */
String id = n + "-" + m; /* Construct ID for cache lookup. */
/* Try to retrieve the function from cache. */
if (RADIAL_FUNCTION_CACHE.containsKey(id)) {
return RADIAL_FUNCTION_CACHE.get(id);
}
/* Initialize coefficients. */
double[] coefficients = new double[n + 1];
/* Now check if Polynomial 0 (for n-|m| = odd) .*/
if ((n - m) % 2 != 0) {
return new PolynomialFunction(coefficients); /* If (n-m) != even, return 0 function. */
}
int s_max = (n - m) / 2;
double sign = -1.0;
for (int s = 0; s <= s_max; ++s) {
int position = n - 2 * s;
long a = CombinatoricsUtils.binomialCoefficient(n-s, s);
long b = CombinatoricsUtils.binomialCoefficient(n-2*s, s_max - s);
coefficients[position] = (FastMath.pow(sign,s) * a * b);
}
PolynomialFunction function = new PolynomialFunction(coefficients);
RADIAL_FUNCTION_CACHE.put(id, function);
return function;
}
示例12: probability
import org.apache.commons.math3.util.CombinatoricsUtils; //导入依赖的package包/类
/** {@inheritDoc} */
public double probability(int x) {
double ret;
if (x < 0) {
ret = 0.0;
} else {
ret = CombinatoricsUtils.binomialCoefficientDouble(x +
numberOfSuccesses - 1, numberOfSuccesses - 1) *
FastMath.pow(probabilityOfSuccess, numberOfSuccesses) *
FastMath.pow(1.0 - probabilityOfSuccess, x);
}
return ret;
}
示例13: logProbability
import org.apache.commons.math3.util.CombinatoricsUtils; //导入依赖的package包/类
/** {@inheritDoc} */
@Override
public double logProbability(int x) {
double ret;
if (x < 0) {
ret = Double.NEGATIVE_INFINITY;
} else {
ret = CombinatoricsUtils.binomialCoefficientLog(x +
numberOfSuccesses - 1, numberOfSuccesses - 1) +
logProbabilityOfSuccess * numberOfSuccesses +
log1mProbabilityOfSuccess * x;
}
return ret;
}
示例14: testWithCompleteGraph
import org.apache.commons.math3.util.CombinatoricsUtils; //导入依赖的package包/类
@Test
public void testWithCompleteGraph() throws Exception {
// all vertex pairs are linked
long expectedCount = CombinatoricsUtils.binomialCoefficient((int) completeGraphVertexCount, 2);
// the intersection includes every vertex
long expectedDistinctNeighborCount = completeGraphVertexCount;
// the union only excludes the two vertices from the similarity score
long expectedSharedNeighborCount = completeGraphVertexCount - 2;
validate(completeGraph, expectedCount, expectedDistinctNeighborCount, expectedSharedNeighborCount);
}
示例15: testWithStarGraph
import org.apache.commons.math3.util.CombinatoricsUtils; //导入依赖的package包/类
@Test
public void testWithStarGraph() throws Exception {
// all leaf vertices form a triplet with all other leaf vertices;
// only the center vertex is excluded
long expectedCount = CombinatoricsUtils.binomialCoefficient((int) starGraphVertexCount - 1, 2);
// the intersection includes only the center vertex
long expectedDistinctNeighborCount = 1;
// the union includes only the center vertex
long expectedSharedNeighborCount = 1;
validate(starGraph, expectedCount, expectedDistinctNeighborCount, expectedSharedNeighborCount);
}