当前位置: 首页>>代码示例>>Java>>正文


Java JDKRandomGenerator类代码示例

本文整理汇总了Java中org.apache.commons.math3.random.JDKRandomGenerator的典型用法代码示例。如果您正苦于以下问题:Java JDKRandomGenerator类的具体用法?Java JDKRandomGenerator怎么用?Java JDKRandomGenerator使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


JDKRandomGenerator类属于org.apache.commons.math3.random包,在下文中一共展示了JDKRandomGenerator类的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: loadConfig

import org.apache.commons.math3.random.JDKRandomGenerator; //导入依赖的package包/类
public void loadConfig(String filename, String username) throws FileNotFoundException {
    ItemConfigs[] loadedConfigSettings = ItemConfigs.build(filename);
    for (ItemConfigs itemConfigs : loadedConfigSettings) {
        if (itemConfigs.getUsers().contains(username)) {
            for (ItemConfig itemConfig : itemConfigs.getConfig()) {
                itemsCount.put(itemConfig.getName(), Integer.parseInt(itemConfig.getCount()));
                for (Relationship relationship : itemConfig.getRelationships()) {
                    JDKRandomGenerator jdkRandomGenerator = new JDKRandomGenerator();
                    jdkRandomGenerator.setSeed(filename.hashCode());
                    LinkedHashMap<Integer, Integer> relationConfig = new LinkedHashMap<>();
                    for (Percent percents : relationship.getPercent()) {
                        relationConfig.put(percents.getVertex(), percents.getPercentage());
                        System.out.println(percents.getVertex() + " / " + percents.getPercentage());
                    }
                    if (relationship.isUnique()) {
                        uniqueRelations.add(relationship.getName());
                    }
                    relDesc.put(relationship.getName(), new PercentageDistro(jdkRandomGenerator, relationConfig));
                }
            }
        }
    }
}
 
开发者ID:HewlettPackard,项目名称:loom,代码行数:24,代码来源:GraphBuilder.java

示例2: testNaNsFixedTiesRandom

import org.apache.commons.math3.random.JDKRandomGenerator; //导入依赖的package包/类
@Test
public void testNaNsFixedTiesRandom() {
    RandomGenerator randomGenerator = new JDKRandomGenerator();
    randomGenerator.setSeed(1000);
    NaturalRanking ranking = new NaturalRanking(NaNStrategy.FIXED,
            randomGenerator);
    double[] ranks = ranking.rank(exampleData);
    double[] correctRanks = { 5, 3, 6, 7, 3, 8, Double.NaN, 1, 2 };
    TestUtils.assertEquals(correctRanks, ranks, 0d);
    ranks = ranking.rank(tiesFirst);
    correctRanks = new double[] { 1, 2, 4, 3, 5 };
    TestUtils.assertEquals(correctRanks, ranks, 0d);
    ranks = ranking.rank(tiesLast);
    correctRanks = new double[] { 3, 3, 2, 1 };
    TestUtils.assertEquals(correctRanks, ranks, 0d);
    ranks = ranking.rank(multipleNaNs);
    correctRanks = new double[] { 1, 2, Double.NaN, Double.NaN };
    TestUtils.assertEquals(correctRanks, ranks, 0d);
    ranks = ranking.rank(multipleTies);
    correctRanks = new double[] { 3, 2, 4, 4, 6, 7, 1 };
    TestUtils.assertEquals(correctRanks, ranks, 0d);
    ranks = ranking.rank(allSame);
    correctRanks = new double[] { 2, 3, 3, 3 };
    TestUtils.assertEquals(correctRanks, ranks, 0d);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:26,代码来源:NaturalRankingTest.java

示例3: testStoredVsDirect

import org.apache.commons.math3.random.JDKRandomGenerator; //导入依赖的package包/类
@Test
public void testStoredVsDirect() {
    final RandomGenerator rand= new JDKRandomGenerator();
    rand.setSeed(Long.MAX_VALUE);
    for (final int sampleSize:sampleSizes) {
        final double[] data = new NormalDistribution(rand,4000, 50)
                            .sample(sampleSize);
        for (final double p:new double[] {50d,95d}) {
            for (final Percentile.EstimationType e : Percentile.EstimationType.values()) {
                reset(p, e);
                final Percentile pStoredData = getUnivariateStatistic();
                pStoredData.setData(data);
                final double storedDataResult=pStoredData.evaluate();
                pStoredData.setData(null);
                final Percentile pDirect = getUnivariateStatistic();
                Assert.assertEquals("Sample="+sampleSize+",P="+p+" e="+e,
                        storedDataResult,
                        pDirect.evaluate(data),0d);
            }
        }
    }
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:23,代码来源:PercentileTest.java

示例4: testSinMin

import org.apache.commons.math3.random.JDKRandomGenerator; //导入依赖的package包/类
@Test
public void testSinMin() {
    UnivariateFunction f = new Sin();
    UnivariateOptimizer underlying = new BrentOptimizer(1e-10, 1e-14);
    JDKRandomGenerator g = new JDKRandomGenerator();
    g.setSeed(44428400075l);
    UnivariateMultiStartOptimizer<UnivariateFunction> optimizer =
        new UnivariateMultiStartOptimizer<UnivariateFunction>(underlying, 10, g);
    optimizer.optimize(300, f, GoalType.MINIMIZE, -100.0, 100.0);
    UnivariatePointValuePair[] optima = optimizer.getOptima();
    for (int i = 1; i < optima.length; ++i) {
        double d = (optima[i].getPoint() - optima[i-1].getPoint()) / (2 * FastMath.PI);
        Assert.assertTrue(FastMath.abs(d - FastMath.rint(d)) < 1.0e-8);
        Assert.assertEquals(-1.0, f.value(optima[i].getPoint()), 1.0e-10);
        Assert.assertEquals(f.value(optima[i].getPoint()), optima[i].getValue(), 1.0e-10);
    }
    Assert.assertTrue(optimizer.getEvaluations() > 200);
    Assert.assertTrue(optimizer.getEvaluations() < 300);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:20,代码来源:UnivariateMultiStartOptimizerTest.java

示例5: testQuinticMin

import org.apache.commons.math3.random.JDKRandomGenerator; //导入依赖的package包/类
@Test
public void testQuinticMin() {
    // The quintic function has zeros at 0, +-0.5 and +-1.
    // The function has extrema (first derivative is zero) at 0.27195613 and 0.82221643,
    UnivariateFunction f = new QuinticFunction();
    UnivariateOptimizer underlying = new BrentOptimizer(1e-9, 1e-14);
    JDKRandomGenerator g = new JDKRandomGenerator();
    g.setSeed(4312000053L);
    UnivariateMultiStartOptimizer<UnivariateFunction> optimizer =
        new UnivariateMultiStartOptimizer<UnivariateFunction>(underlying, 5, g);

    UnivariatePointValuePair optimum
        = optimizer.optimize(300, f, GoalType.MINIMIZE, -0.3, -0.2);
    Assert.assertEquals(-0.2719561293, optimum.getPoint(), 1e-9);
    Assert.assertEquals(-0.0443342695, optimum.getValue(), 1e-9);

    UnivariatePointValuePair[] optima = optimizer.getOptima();
    for (int i = 0; i < optima.length; ++i) {
        Assert.assertEquals(f.value(optima[i].getPoint()), optima[i].getValue(), 1e-9);
    }
    Assert.assertTrue(optimizer.getEvaluations() >= 50);
    Assert.assertTrue(optimizer.getEvaluations() <= 100);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:24,代码来源:UnivariateMultiStartOptimizerTest.java

示例6: testBadFunction

import org.apache.commons.math3.random.JDKRandomGenerator; //导入依赖的package包/类
@Test
public void testBadFunction() {
    UnivariateFunction f = new UnivariateFunction() {
            public double value(double x) {
                if (x < 0) {
                    throw new LocalException();
                }
                return 0;
            }
        };
    UnivariateOptimizer underlying = new BrentOptimizer(1e-9, 1e-14);
    JDKRandomGenerator g = new JDKRandomGenerator();
    g.setSeed(4312000053L);
    UnivariateMultiStartOptimizer<UnivariateFunction> optimizer =
        new UnivariateMultiStartOptimizer<UnivariateFunction>(underlying, 5, g);
 
    try {
        optimizer.optimize(300, f, GoalType.MINIMIZE, -0.3, -0.2);
        Assert.fail();
    } catch (LocalException e) {
        // Expected.
    }

    // Ensure that the exception was thrown because no optimum was found.
    Assert.assertTrue(optimizer.getOptima()[0] == null);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:27,代码来源:UnivariateMultiStartOptimizerTest.java

示例7: testRosenbrock

import org.apache.commons.math3.random.JDKRandomGenerator; //导入依赖的package包/类
@Test
public void testRosenbrock() {
    Rosenbrock rosenbrock = new Rosenbrock();
    SimplexOptimizer underlying
        = new SimplexOptimizer(new SimpleValueChecker(-1, 1.0e-3));
    NelderMeadSimplex simplex = new NelderMeadSimplex(new double[][] {
            { -1.2,  1.0 }, { 0.9, 1.2 } , {  3.5, -2.3 }
        });
    underlying.setSimplex(simplex);
    JDKRandomGenerator g = new JDKRandomGenerator();
    g.setSeed(16069223052l);
    RandomVectorGenerator generator =
        new UncorrelatedRandomVectorGenerator(2, new GaussianRandomGenerator(g));
    MultivariateMultiStartOptimizer optimizer =
        new MultivariateMultiStartOptimizer(underlying, 10, generator);
    PointValuePair optimum =
        optimizer.optimize(1100, rosenbrock, GoalType.MINIMIZE, new double[] { -1.2, 1.0 });

    Assert.assertEquals(rosenbrock.getCount(), optimizer.getEvaluations());
    Assert.assertTrue(optimizer.getEvaluations() > 900);
    Assert.assertTrue(optimizer.getEvaluations() < 1200);
    Assert.assertTrue(optimum.getValue() < 8.0e-4);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:24,代码来源:MultivariateMultiStartOptimizerTest.java

示例8: testSinMin

import org.apache.commons.math3.random.JDKRandomGenerator; //导入依赖的package包/类
@Test
public void testSinMin() {
    UnivariateFunction f = new Sin();
    UnivariateOptimizer underlying = new BrentOptimizer(1e-10, 1e-14);
    JDKRandomGenerator g = new JDKRandomGenerator();
    g.setSeed(44428400075l);
    MultiStartUnivariateOptimizer optimizer = new MultiStartUnivariateOptimizer(underlying, 10, g);
    optimizer.optimize(new MaxEval(300),
                       new UnivariateObjectiveFunction(f),
                       GoalType.MINIMIZE,
                       new SearchInterval(-100.0, 100.0));
    UnivariatePointValuePair[] optima = optimizer.getOptima();
    for (int i = 1; i < optima.length; ++i) {
        double d = (optima[i].getPoint() - optima[i-1].getPoint()) / (2 * FastMath.PI);
        Assert.assertTrue(FastMath.abs(d - FastMath.rint(d)) < 1.0e-8);
        Assert.assertEquals(-1.0, f.value(optima[i].getPoint()), 1.0e-10);
        Assert.assertEquals(f.value(optima[i].getPoint()), optima[i].getValue(), 1.0e-10);
    }
    Assert.assertTrue(optimizer.getEvaluations() > 200);
    Assert.assertTrue(optimizer.getEvaluations() < 300);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:22,代码来源:MultiStartUnivariateOptimizerTest.java

示例9: testQuinticMin

import org.apache.commons.math3.random.JDKRandomGenerator; //导入依赖的package包/类
@Test
public void testQuinticMin() {
    // The quintic function has zeros at 0, +-0.5 and +-1.
    // The function has extrema (first derivative is zero) at 0.27195613 and 0.82221643,
    UnivariateFunction f = new QuinticFunction();
    UnivariateOptimizer underlying = new BrentOptimizer(1e-9, 1e-14);
    JDKRandomGenerator g = new JDKRandomGenerator();
    g.setSeed(4312000053L);
    MultiStartUnivariateOptimizer optimizer = new MultiStartUnivariateOptimizer(underlying, 5, g);

    UnivariatePointValuePair optimum
        = optimizer.optimize(new MaxEval(300),
                             new UnivariateObjectiveFunction(f),
                             GoalType.MINIMIZE,
                             new SearchInterval(-0.3, -0.2));
    Assert.assertEquals(-0.27195613, optimum.getPoint(), 1e-9);
    Assert.assertEquals(-0.0443342695, optimum.getValue(), 1e-9);

    UnivariatePointValuePair[] optima = optimizer.getOptima();
    for (int i = 0; i < optima.length; ++i) {
        Assert.assertEquals(f.value(optima[i].getPoint()), optima[i].getValue(), 1e-9);
    }
    Assert.assertTrue(optimizer.getEvaluations() >= 50);
    Assert.assertTrue(optimizer.getEvaluations() <= 100);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:26,代码来源:MultiStartUnivariateOptimizerTest.java

示例10: testNoOptimum

import org.apache.commons.math3.random.JDKRandomGenerator; //导入依赖的package包/类
/**
 * Test demonstrating that the user exception is finally thrown if none
 * of the runs succeed.
 */
@Test(expected=TestException.class)
public void testNoOptimum() {
    JacobianMultivariateVectorOptimizer underlyingOptimizer
        = new GaussNewtonOptimizer(true, new SimpleVectorValueChecker(1e-6, 1e-6));
    JDKRandomGenerator g = new JDKRandomGenerator();
    g.setSeed(12373523445l);
    RandomVectorGenerator generator
        = new UncorrelatedRandomVectorGenerator(1, new GaussianRandomGenerator(g));
    MultiStartMultivariateVectorOptimizer optimizer
        = new MultiStartMultivariateVectorOptimizer(underlyingOptimizer, 10, generator);
    optimizer.optimize(new MaxEval(100),
                       new Target(new double[] { 0 }),
                       new Weight(new double[] { 1 }),
                       new InitialGuess(new double[] { 0 }),
                       new ModelFunction(new MultivariateVectorFunction() {
                               public double[] value(double[] point) {
                                   throw new TestException();
                               }
                           }));
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:25,代码来源:MultiStartMultivariateVectorOptimizerTest.java

示例11: GenerateInitCentroids

import org.apache.commons.math3.random.JDKRandomGenerator; //导入依赖的package包/类
private void GenerateInitCentroids() {
    centroids = loadCentroids();
    Random random = new Random(12397238947287L);
    List<Point> initCentroids = new ArrayList<>();
    RandomGenerator point_random = new JDKRandomGenerator();

    for (Point centroid : centroids) {
        MultivariateNormalDistribution distribution = new MultivariateNormalDistribution(point_random, means, covariances);

        double[] point = distribution.sample();
        StringBuilder sb = new StringBuilder();
        for (int i = 0; i < dimension - 1; i++) {
            point[i] += centroid.location[i];
            sb.append(point[i]).append(", ");
        }
        point[dimension - 1] += centroid.location[dimension - 1];
        sb.append(point[dimension - 1]);

        System.out.println(sb.toString());
    }
}
 
开发者ID:wangyangjun,项目名称:StreamBench,代码行数:22,代码来源:KMeansPoints.java

示例12: testMultivariate

import org.apache.commons.math3.random.JDKRandomGenerator; //导入依赖的package包/类
@Test public void testMultivariate() throws IncompleteSolutionException {

        Objenome o = Objenome.solve(new OptimizeMultivariate(ExampleMultivariateFunction.class, new Function<ExampleMultivariateFunction, Double>() {

            public Double apply(ExampleMultivariateFunction s) {      
                double v = s.output(0.0) + s.output(0.5) + s.output(1.0);
                return v;
            }
            
        }) {
            @Override protected RandomGenerator getRandomGenerator() {
                JDKRandomGenerator j = new JDKRandomGenerator();  j.setSeed(0); return j;
            }        
        } .minimize(), ExampleMultivariateFunction.class);
        
        double bestParam = ((Number)o.getSolutions().get(1)).doubleValue();
        assertEquals(-2.5919, bestParam, 0.001);
    }
 
开发者ID:automenta,项目名称:objenome_prototype,代码行数:19,代码来源:NumericAnalysisTest.java

示例13: testNaNsFixedTiesRandom

import org.apache.commons.math3.random.JDKRandomGenerator; //导入依赖的package包/类
@Test
public void testNaNsFixedTiesRandom() {
    RandomGenerator randomGenerator = new JDKRandomGenerator();
    randomGenerator.setSeed(1000);
    NaturalRanking ranking = new NaturalRanking(NaNStrategy.FIXED,
            randomGenerator);
    double[] ranks = ranking.rank(exampleData);
    double[] correctRanks = { 5, 4, 6, 7, 3, 8, Double.NaN, 1, 4 };
    TestUtils.assertEquals(correctRanks, ranks, 0d);
    ranks = ranking.rank(tiesFirst);
    correctRanks = new double[] { 1, 1, 4, 3, 5 };
    TestUtils.assertEquals(correctRanks, ranks, 0d);
    ranks = ranking.rank(tiesLast);
    correctRanks = new double[] { 3, 4, 2, 1 };
    TestUtils.assertEquals(correctRanks, ranks, 0d);
    ranks = ranking.rank(multipleNaNs);
    correctRanks = new double[] { 1, 2, Double.NaN, Double.NaN };
    TestUtils.assertEquals(correctRanks, ranks, 0d);
    ranks = ranking.rank(multipleTies);
    correctRanks = new double[] { 3, 2, 5, 5, 7, 6, 1 };
    TestUtils.assertEquals(correctRanks, ranks, 0d);
    ranks = ranking.rank(allSame);
    correctRanks = new double[] { 1, 3, 4, 4 };
    TestUtils.assertEquals(correctRanks, ranks, 0d);
}
 
开发者ID:SpoonLabs,项目名称:astor,代码行数:26,代码来源:NaturalRankingTest.java


注:本文中的org.apache.commons.math3.random.JDKRandomGenerator类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。