本文整理汇总了Java中org.apache.commons.math3.optim.linear.LinearObjectiveFunction类的典型用法代码示例。如果您正苦于以下问题:Java LinearObjectiveFunction类的具体用法?Java LinearObjectiveFunction怎么用?Java LinearObjectiveFunction使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
LinearObjectiveFunction类属于org.apache.commons.math3.optim.linear包,在下文中一共展示了LinearObjectiveFunction类的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。
示例1: solve
import org.apache.commons.math3.optim.linear.LinearObjectiveFunction; //导入依赖的package包/类
@Override
public void solve(double[] dir)
{
/* Check the dimension of the vectorspace where lives dir */
if (dir.length != d)
throw new LinearProgrammingSolverException(dddirMessage);
/* Update the constraints set of the simplex solver if modification */
if (lcListModified)
{
List <LinearConstraint> lcList = new ArrayList <LinearConstraint>();
int n = dirList.size();
for (int i = 0 ; i < n ; i++) lcList.add(new LinearConstraint(dirList.get(i), Relationship.LEQ, valList.get(i)));
lcSet = new LinearConstraintSet(lcList);
}
/* Evaluation */
PointValuePair res = solver.optimize(new LinearObjectiveFunction(dir, 0), lcSet, GoalType.MAXIMIZE);
/* Update the results and the flags */
point = res.getPoint ();
value = res.getSecond ();
evaluated = true;
lcListModified = false;
}
示例2: getOptimalFeasibleSolution
import org.apache.commons.math3.optim.linear.LinearObjectiveFunction; //导入依赖的package包/类
private double[] getOptimalFeasibleSolution(double[] histA,
double[] histB, double[] bins, int dimension) {
int num = bins.length / dimension;
Collection<LinearConstraint> constraints = new ArrayList<LinearConstraint>();
double[] coefficients = new double[num * 2];
for (int i = 0; i < num; i++) {
for (int j = 0; j < num; j++) {
coefficients = setIJ(coefficients, i, j);
double dist = DistanceUtil.getGroundDist(DistanceUtil.getBin(bins, dimension, i),
DistanceUtil.getBin(bins, dimension, j), DistanceType.LTWO, null);
constraints.add(new LinearConstraint(coefficients, Relationship.LEQ, dist));
}
}
for (int i = 0; i < num; i++) {
coefficients[i] = histA[i];
coefficients[i + num] = histB[i];
}
LinearObjectiveFunction objective = new LinearObjectiveFunction(coefficients, 0);
LinearConstraintSet consSet = new LinearConstraintSet(constraints);
NonNegativeConstraint nonNeg = new NonNegativeConstraint(false);
optimal = solver.optimize(objective, consSet, nonNeg, GoalType.MAXIMIZE, maxIter);
return optimal.getPoint();
}
示例3: calculatePrimal
import org.apache.commons.math3.optim.linear.LinearObjectiveFunction; //导入依赖的package包/类
public PointValuePair calculatePrimal() {
SimplexSolver solver = new SimplexSolver();
//All variables are nonnegative
NonNegativeConstraint nonneg = new NonNegativeConstraint(true);
//objective function is of the form MAX w+ - w- (+0x1,etc)
LinearObjectiveFunction objective = new LinearObjectiveFunction(new double[] {1.0, -1.0, 0.0,0.0,0.0}, 0.0);
ArrayList<LinearConstraint> constraints = new ArrayList<>();
//probabilities must sum to 1.0
double[] probabilityConstraint = new double[values.length + 2];
probabilityConstraint[0] = probabilityConstraint[1] = 0.0;
for(int i=2; i<probabilityConstraint.length; i++)
probabilityConstraint[i]=1.0;
constraints.add(new LinearConstraint(probabilityConstraint, Relationship.EQ, 1.0));
//input game parameters
//constraints supports two-sided equation
double[] wConstraint = new double[values.length + 2];
wConstraint[0] = 1.0;
wConstraint[1] = -1.0;
for(int i=0; i<values.length; i++) {
double[] constr = new double[values.length+2];
for(int j=2; j<constr.length; j++)
constr[j]=values[i][j-2];
constraints.add(new LinearConstraint(wConstraint, 0.0, Relationship.LEQ, constr, 0.0));
}
LinearConstraintSet constraintSet = new LinearConstraintSet(constraints);
PointValuePair optimal = solver.optimize(objective, nonneg, constraintSet, GoalType.MAXIMIZE);
return optimal;
}
示例4: calculateDual
import org.apache.commons.math3.optim.linear.LinearObjectiveFunction; //导入依赖的package包/类
public PointValuePair calculateDual() {
SimplexSolver solver = new SimplexSolver();
//All variables are nonnegative
NonNegativeConstraint nonneg = new NonNegativeConstraint(true);
//objective function is of the form MAX w+ - w- (+0x1,etc)
LinearObjectiveFunction objective = new LinearObjectiveFunction(new double[] {1.0, -1.0, 0.0,0.0,0.0}, 0.0);
ArrayList<LinearConstraint> constraints = new ArrayList<>();
//probabilities must sum to 1.0
double[] probabilityConstraint = new double[values.length + 2];
probabilityConstraint[0] = probabilityConstraint[1] = 0.0;
for(int i=2; i<probabilityConstraint.length; i++)
probabilityConstraint[i]=1.0;
constraints.add(new LinearConstraint(probabilityConstraint, Relationship.EQ, 1.0));
//input game parameters
//constraints supports two-sided equation
double[] wConstraint = new double[values.length +2];
wConstraint[0] = 1.0;
wConstraint[1] = -1.0;
for(int i=0; i<values.length; i++) {
double[] constr = new double[values.length+2];
for(int j=2; j<constr.length; j++)
constr[j]=values[j-2][i];
constraints.add(new LinearConstraint(wConstraint, 0.0, Relationship.GEQ, constr, 0.0));
}
// constraints.add(new LinearConstraint(new double[] {1.0,-1.0,0.0,0.0,0.0}, 0.0, Relationship.GEQ, new double[] {0.0,0.0,values[0][0],values[1][0],values[2][0]}, 0.0));
// constraints.add(new LinearConstraint(new double[] {1.0,-1.0,0.0,0.0,0.0}, 0.0, Relationship.GEQ, new double[] {0.0,0.0,values[0][1],values[1][1],values[2][1]}, 0.0));
// constraints.add(new LinearConstraint(new double[] {1.0,-1.0,0.0,0.0,0.0}, 0.0, Relationship.GEQ, new double[] {0.0,0.0,values[0][2],values[1][2],values[2][2]}, 0.0));
LinearConstraintSet constraintSet = new LinearConstraintSet(constraints);
PointValuePair optimal = solver.optimize(objective, nonneg, constraintSet, GoalType.MINIMIZE);
return optimal;
}
示例5: Solution
import org.apache.commons.math3.optim.linear.LinearObjectiveFunction; //导入依赖的package包/类
public Solution(ProblemParameters problemParameters, PatternKind patternKind, PatternPlacement patternPlacement)
{
this.fitnessValueSolution = null;
this.patternKind = patternKind;
this.patternPlacement = patternPlacement;
diagnosis.TimeDiagnosis td = new TimeDiagnosis();
td.tick();
SolutionGenerator sg = new IncrementalSolutionGenerator(patternPlacement, patternKind, 100000, 1000000, 0.001);
int nbPatterns = 2;
while(!sg.compute(nbPatterns) || !isPossible(sg.getPatterns(), patternKind, patternPlacement))
{
if(nbPatterns < problemParameters.getMaxNumberOfPatterns())
nbPatterns++;
}
this.patterns = sg.getPatterns();
System.out.println(td.tick());
System.out.println("Solution de départ trouvée ["+nbPatterns+"]. Application de l'algorithme...");
this.coefs = new double[nbPatterns];
for(int i = 0; i < this.coefs.length; i++)
this.coefs[i] = problemParameters.getPrintPrice();
f = new LinearObjectiveFunction(this.coefs, problemParameters.getConstant());
System.out.println(this);
}
开发者ID:Polytech-AdrienCastex,项目名称:2D-Cutting-Stock-Problem-with-Setup-Cost,代码行数:32,代码来源:Solution.java
示例6: simplexDouble
import org.apache.commons.math3.optim.linear.LinearObjectiveFunction; //导入依赖的package包/类
/**
*
* @param A ресурсы на выпуск всех товаров (юнитов) [номер ресурса][номер юнита]
* @param b предел ресурсов (ограничение)
* @param c выгода
* @param x out кол-во выпуска (план выпуска, ответ)
* @return суммарная выгода плана x
*/
public static double simplexDouble(double[][] A, double[] b, double[] c, double[] x) {
// return justOneMaximize(A,b,c, x); // maybe fast, but not precission
// - - -
LinearObjectiveFunction f = new LinearObjectiveFunction(c, 0); // !!!
ArrayList<LinearConstraint> constraints = new ArrayList<LinearConstraint>();
for(int i=0; i<A.length; i++) { // Ограничения
constraints.add( new LinearConstraint(A[i], Relationship.LEQ, b[i]) ); // _c[i]*x[i]<=V_Res[i]
double[] zeroV = new double[A[i].length];
Arrays.fill(zeroV, 0);
constraints.add( new LinearConstraint(zeroV, Relationship.GEQ, 0) ); // _c[i]*x[i]<=V_Res[i]
}
// TODO при переработке энергии в металл можно учесть с помощью двух переменных и ограничения!!!
// FIXME precission - do not use between 0.00001 and 1.0, only 1,2,3...
SimplexSolver solver = new SimplexSolver();
PointValuePair optSolution = solver.optimize(new MaxIter(1000), f,
new LinearConstraintSet(constraints),
GoalType.MAXIMIZE,
new NonNegativeConstraint(true));
//double[] solution = optSolution.getPoint();
double[] x_=optSolution.getPointRef(); // TODO it is bad fix for n*1.0. To do iteration.
for (int i=0;i<x_.length;i++) if (x_[i]>0) x_[i]=Math.round(x_[i]-0.5);
System.arraycopy(x_, 0, x, 0, x.length);
return optSolution.getValue();
// - - -
}
示例7: getEmd
import org.apache.commons.math3.optim.linear.LinearObjectiveFunction; //导入依赖的package包/类
/**
* Compute the EMD between two histograms, using Simplex method
* @param histA the first histogram
* @param histB the second histogram
* @param dimension the dimension of bins
* @param bins the bins of the histogram
* @param distType the ground distance type
* @param costMatrix specific cost matrix used for ground distance, only valid if distType is ARBITRARY
* @return the exact EMD
*/
public static double getEmd(double[] histA, double[] histB, int dimension, double[] bins, DistanceType distType, HashMap<String, Double> costMatrix) {
if (HistUtil.sum(histA) != HistUtil.sum(histB)) {
//System.out.println("Infeasible: " + FormatUtil.toString(histA) + " - " + FormatUtil.toString(histB));
histA = HistUtil.normalizeArray(histA);
histB = HistUtil.normalizeArray(histB);
}
int numBins = bins.length / dimension;
double[] coefficients = new double[numBins*numBins];
if (numBins != histA.length || histA.length != histB.length) {
return -1.0;
}
Collection<LinearConstraint> constraints = new ArrayList<LinearConstraint>();
for (int i = 0; i < numBins; i++) {
for (int j = 0; j < numBins; j++) {
coefficients[i*numBins + j] = getGroundDist(getBin(bins, dimension, i), getBin(bins, dimension, j), distType, costMatrix);
}
}
for (int i = 0; i < numBins; i++) {
double[] flowFrom = getFlow(numBins, i, true);
double[] flowTo = getFlow(numBins, i, false);
constraints.add(new LinearConstraint(flowFrom, Relationship.LEQ, histA[i]));
constraints.add(new LinearConstraint(flowTo, Relationship.LEQ, histB[i]));
if (histA[i] - histB[i] > 0) {
constraints.add(new LinearConstraint(subtract(flowFrom, flowTo), Relationship.EQ, histA[i] - histB[i]));
}
else {
constraints.add(new LinearConstraint(subtract(flowTo, flowFrom), Relationship.EQ, histB[i] - histA[i]));
}
}
LinearObjectiveFunction minF = new LinearObjectiveFunction(coefficients, 0);
LinearConstraintSet constraintSet = new LinearConstraintSet(constraints);
NonNegativeConstraint nonNegConstraint = new NonNegativeConstraint(true);
solution = solver.optimize(minF, constraintSet, nonNegConstraint, GoalType.MINIMIZE, maxIter);
return solution.getValue();
}
示例8: getIndMinEmd
import org.apache.commons.math3.optim.linear.LinearObjectiveFunction; //导入依赖的package包/类
public static double getIndMinEmd(double[] histA, double[] histB, int dimension, double[] bins, DistanceType distType, HashMap<String, Double> costMatrix) {
if (HistUtil.sum(histA) != HistUtil.sum(histB)) {
//System.out.println("Infeasible: " + FormatUtil.toString(histA) + " - " + FormatUtil.toString(histB));
histA = HistUtil.normalizeArray(histA);
histB = HistUtil.normalizeArray(histB);
}
int numBins = bins.length / dimension;
double[] coefficients = new double[numBins*numBins];
if (numBins != histA.length || histA.length != histB.length) {
return -1.0;
}
Collection<LinearConstraint> constraints = new ArrayList<LinearConstraint>();
for (int i = 0; i < numBins; i++) {
for (int j = 0; j < numBins; j++) {
coefficients[i*numBins + j] = getGroundDist(getBin(bins, dimension, i), getBin(bins, dimension, j), distType, costMatrix);
}
}
for (int i = 0; i < numBins; i++) {
double[] flowFrom = getFlow(numBins, i, true);
double[] flowTo = getFlow(numBins, i, false);
constraints.add(new LinearConstraint(flowFrom, Relationship.LEQ, histA[i]));
// constraints.add(new LinearConstraint(flowTo, Relationship.LEQ, histB[i]));
if (histA[i] - histB[i] > 0) {
constraints.add(new LinearConstraint(subtract(flowFrom, flowTo), Relationship.EQ, histA[i] - histB[i]));
}
// else {
// constraints.add(new LinearConstraint(subtract(flowTo, flowFrom), Relationship.LEQ, histB[i] - histA[i]));
// }
}
LinearObjectiveFunction minF = new LinearObjectiveFunction(coefficients, 0);
LinearConstraintSet constraintSet = new LinearConstraintSet(constraints);
NonNegativeConstraint nonNegConstraint = new NonNegativeConstraint(true);
solution = solver.optimize(minF, constraintSet, nonNegConstraint, GoalType.MINIMIZE, maxIter);
return solution.getValue();
}
示例9: getObjectiveFunction
import org.apache.commons.math3.optim.linear.LinearObjectiveFunction; //导入依赖的package包/类
public LinearObjectiveFunction getObjectiveFunction()
{
return f;
}