当前位置: 首页>>代码示例>>Java>>正文


Java PointVectorValuePair类代码示例

本文整理汇总了Java中org.apache.commons.math3.optim.PointVectorValuePair的典型用法代码示例。如果您正苦于以下问题:Java PointVectorValuePair类的具体用法?Java PointVectorValuePair怎么用?Java PointVectorValuePair使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。


PointVectorValuePair类属于org.apache.commons.math3.optim包,在下文中一共展示了PointVectorValuePair类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: evaluationChecker

import org.apache.commons.math3.optim.PointVectorValuePair; //导入依赖的package包/类
/**
 * View a convergence checker specified for a {@link PointVectorValuePair} as one
 * specified for an {@link Evaluation}.
 *
 * @param checker the convergence checker to adapt.
 * @return a convergence checker that delegates to {@code checker}.
 */
public static ConvergenceChecker<Evaluation> evaluationChecker(final ConvergenceChecker<PointVectorValuePair> checker) {
    return new ConvergenceChecker<Evaluation>() {
        /** {@inheritDoc} */
        public boolean converged(final int iteration,
                                 final Evaluation previous,
                                 final Evaluation current) {
            return checker.converged(
                    iteration,
                    new PointVectorValuePair(
                            previous.getPoint().toArray(),
                            previous.getResiduals().toArray(),
                            false),
                    new PointVectorValuePair(
                            current.getPoint().toArray(),
                            current.getResiduals().toArray(),
                            false)
            );
        }
    };
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:28,代码来源:LeastSquaresFactory.java

示例2: evaluationChecker

import org.apache.commons.math3.optim.PointVectorValuePair; //导入依赖的package包/类
/**
 * View a convergence checker specified for a {@link PointVectorValuePair} as one
 * specified for an {@link Evaluation}.
 *
 * @param checker the convergence checker to adapt.
 * @return a convergence checker that delegates to {@code checker}.
 */
public static ConvergenceChecker<Evaluation> evaluationChecker(final ConvergenceChecker<PointVectorValuePair> checker) {
    return new ConvergenceChecker<Evaluation>() {
        public boolean converged(final int iteration,
                                 final Evaluation previous,
                                 final Evaluation current) {
            return checker.converged(
                    iteration,
                    new PointVectorValuePair(
                            previous.getPoint().toArray(),
                            previous.getResiduals().toArray(),
                            false),
                    new PointVectorValuePair(
                            current.getPoint().toArray(),
                            current.getResiduals().toArray(),
                            false)
            );
        }
    };
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:27,代码来源:LeastSquaresFactory.java

示例3: getPairComparator

import org.apache.commons.math3.optim.PointVectorValuePair; //导入依赖的package包/类
/**
 * @return a comparator for sorting the optima.
 */
private Comparator<PointVectorValuePair> getPairComparator() {
    return new Comparator<PointVectorValuePair>() {
        private final RealVector target = new ArrayRealVector(optimizer.getTarget(), false);
        private final RealMatrix weight = optimizer.getWeight();

        public int compare(final PointVectorValuePair o1,
                           final PointVectorValuePair o2) {
            if (o1 == null) {
                return (o2 == null) ? 0 : 1;
            } else if (o2 == null) {
                return -1;
            }
            return Double.compare(weightedResidual(o1),
                                  weightedResidual(o2));
        }

        private double weightedResidual(final PointVectorValuePair pv) {
            final RealVector v = new ArrayRealVector(pv.getValueRef(), false);
            final RealVector r = target.subtract(v);
            return r.dotProduct(weight.operate(r));
        }
    };
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:27,代码来源:MultiStartMultivariateVectorOptimizer.java

示例4: testNonInvertible

import org.apache.commons.math3.optim.PointVectorValuePair; //导入依赖的package包/类
@Override
@Test(expected=SingularMatrixException.class)
public void testNonInvertible() {
    /*
     * Overrides the method from parent class, since the default singularity
     * threshold (1e-14) does not trigger the expected exception.
     */
    LinearProblem problem = new LinearProblem(new double[][] {
            {  1, 2, -3 },
            {  2, 1,  3 },
            { -3, 0, -9 }
    }, new double[] { 1, 1, 1 });

    AbstractLeastSquaresOptimizer optimizer = createOptimizer();
    PointVectorValuePair optimum
        = optimizer.optimize(new MaxEval(100),
                             problem.getModelFunction(),
                             problem.getModelFunctionJacobian(),
                             problem.getTarget(),
                             new Weight(new double[] { 1, 1, 1 }),
                             new InitialGuess(new double[] { 0, 0, 0 }));
    Assert.assertTrue(FastMath.sqrt(optimizer.getTargetSize()) * optimizer.getRMS() > 0.6);

    optimizer.computeCovariances(optimum.getPoint(), 1.5e-14);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:26,代码来源:LevenbergMarquardtOptimizerTest.java

示例5: testTrivial

import org.apache.commons.math3.optim.PointVectorValuePair; //导入依赖的package包/类
@Test
public void testTrivial() {
    LinearProblem problem
        = new LinearProblem(new double[][] { { 2 } }, new double[] { 3 });
    AbstractLeastSquaresOptimizer optimizer = createOptimizer();
    PointVectorValuePair optimum =
        optimizer.optimize(new MaxEval(100),
                           problem.getModelFunction(),
                           problem.getModelFunctionJacobian(),
                           problem.getTarget(),
                           new Weight(new double[] { 1 }),
                           new InitialGuess(new double[] { 0 }));
    Assert.assertEquals(0, optimizer.getRMS(), 1e-10);
    Assert.assertEquals(1.5, optimum.getPoint()[0], 1e-10);
    Assert.assertEquals(3.0, optimum.getValue()[0], 1e-10);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:17,代码来源:AbstractLeastSquaresOptimizerAbstractTest.java

示例6: testQRColumnsPermutation

import org.apache.commons.math3.optim.PointVectorValuePair; //导入依赖的package包/类
@Test
public void testQRColumnsPermutation() {

    LinearProblem problem
        = new LinearProblem(new double[][] { { 1, -1 }, { 0, 2 }, { 1, -2 } },
                            new double[] { 4, 6, 1 });

    AbstractLeastSquaresOptimizer optimizer = createOptimizer();
    PointVectorValuePair optimum =
        optimizer.optimize(new MaxEval(100),
                           problem.getModelFunction(),
                           problem.getModelFunctionJacobian(),
                           problem.getTarget(),
                           new Weight(new double[] { 1, 1, 1 }),
                           new InitialGuess(new double[] { 0, 0 }));
    Assert.assertEquals(0, optimizer.getRMS(), 1e-10);
    Assert.assertEquals(7, optimum.getPoint()[0], 1e-10);
    Assert.assertEquals(3, optimum.getPoint()[1], 1e-10);
    Assert.assertEquals(4, optimum.getValue()[0], 1e-10);
    Assert.assertEquals(6, optimum.getValue()[1], 1e-10);
    Assert.assertEquals(1, optimum.getValue()[2], 1e-10);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:23,代码来源:AbstractLeastSquaresOptimizerAbstractTest.java

示例7: testNoDependency

import org.apache.commons.math3.optim.PointVectorValuePair; //导入依赖的package包/类
@Test
public void testNoDependency() {
    LinearProblem problem = new LinearProblem(new double[][] {
            { 2, 0, 0, 0, 0, 0 },
            { 0, 2, 0, 0, 0, 0 },
            { 0, 0, 2, 0, 0, 0 },
            { 0, 0, 0, 2, 0, 0 },
            { 0, 0, 0, 0, 2, 0 },
            { 0, 0, 0, 0, 0, 2 }
    }, new double[] { 0, 1.1, 2.2, 3.3, 4.4, 5.5 });
    AbstractLeastSquaresOptimizer optimizer = createOptimizer();
    PointVectorValuePair optimum =
        optimizer.optimize(new MaxEval(100),
                           problem.getModelFunction(),
                           problem.getModelFunctionJacobian(),
                           problem.getTarget(),
                           new Weight(new double[] { 1, 1, 1, 1, 1, 1 }),
                           new InitialGuess(new double[] { 0, 0, 0, 0, 0, 0 }));
    Assert.assertEquals(0, optimizer.getRMS(), 1e-10);
    for (int i = 0; i < problem.target.length; ++i) {
        Assert.assertEquals(0.55 * i, optimum.getPoint()[i], 1e-10);
    }
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:24,代码来源:AbstractLeastSquaresOptimizerAbstractTest.java

示例8: testOneSet

import org.apache.commons.math3.optim.PointVectorValuePair; //导入依赖的package包/类
@Test
public void testOneSet() {

    LinearProblem problem = new LinearProblem(new double[][] {
            {  1,  0, 0 },
            { -1,  1, 0 },
            {  0, -1, 1 }
    }, new double[] { 1, 1, 1});
    AbstractLeastSquaresOptimizer optimizer = createOptimizer();
    PointVectorValuePair optimum =
        optimizer.optimize(new MaxEval(100),
                           problem.getModelFunction(),
                           problem.getModelFunctionJacobian(),
                           problem.getTarget(),
                           new Weight(new double[] { 1, 1, 1 }),
                           new InitialGuess(new double[] { 0, 0, 0 }));
    Assert.assertEquals(0, optimizer.getRMS(), 1e-10);
    Assert.assertEquals(1, optimum.getPoint()[0], 1e-10);
    Assert.assertEquals(2, optimum.getPoint()[1], 1e-10);
    Assert.assertEquals(3, optimum.getPoint()[2], 1e-10);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:22,代码来源:AbstractLeastSquaresOptimizerAbstractTest.java

示例9: testMoreEstimatedParametersUnsorted

import org.apache.commons.math3.optim.PointVectorValuePair; //导入依赖的package包/类
@Test
public void testMoreEstimatedParametersUnsorted() {
    LinearProblem problem = new LinearProblem(new double[][] {
            { 1, 1,  0,  0, 0,  0 },
            { 0, 0,  1,  1, 1,  0 },
            { 0, 0,  0,  0, 1, -1 },
            { 0, 0, -1,  1, 0,  1 },
            { 0, 0,  0, -1, 1,  0 }
   }, new double[] { 3, 12, -1, 7, 1 });

    AbstractLeastSquaresOptimizer optimizer = createOptimizer();
    PointVectorValuePair optimum =
        optimizer.optimize(new MaxEval(100),
                           problem.getModelFunction(),
                           problem.getModelFunctionJacobian(),
                           problem.getTarget(),
                           new Weight(new double[] { 1, 1, 1, 1, 1 }),
                           new InitialGuess(new double[] { 2, 2, 2, 2, 2, 2 }));
    Assert.assertEquals(0, optimizer.getRMS(), 1e-10);
    Assert.assertEquals(3, optimum.getPointRef()[2], 1e-10);
    Assert.assertEquals(4, optimum.getPointRef()[3], 1e-10);
    Assert.assertEquals(5, optimum.getPointRef()[4], 1e-10);
    Assert.assertEquals(6, optimum.getPointRef()[5], 1e-10);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:25,代码来源:AbstractLeastSquaresOptimizerAbstractTest.java

示例10: testRedundantEquations

import org.apache.commons.math3.optim.PointVectorValuePair; //导入依赖的package包/类
@Test
public void testRedundantEquations() {
    LinearProblem problem = new LinearProblem(new double[][] {
            { 1,  1 },
            { 1, -1 },
            { 1,  3 }
    }, new double[] { 3, 1, 5 });

    AbstractLeastSquaresOptimizer optimizer = createOptimizer();
    PointVectorValuePair optimum =
        optimizer.optimize(new MaxEval(100),
                           problem.getModelFunction(),
                           problem.getModelFunctionJacobian(),
                           problem.getTarget(),
                           new Weight(new double[] { 1, 1, 1 }),
                           new InitialGuess(new double[] { 1, 1 }));
    Assert.assertEquals(0, optimizer.getRMS(), 1e-10);
    Assert.assertEquals(2, optimum.getPointRef()[0], 1e-10);
    Assert.assertEquals(1, optimum.getPointRef()[1], 1e-10);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:21,代码来源:AbstractLeastSquaresOptimizerAbstractTest.java

示例11: testInconsistentSizes1

import org.apache.commons.math3.optim.PointVectorValuePair; //导入依赖的package包/类
@Test(expected=DimensionMismatchException.class)
public void testInconsistentSizes1() {
    LinearProblem problem
        = new LinearProblem(new double[][] { { 1, 0 }, { 0, 1 } },
                            new double[] { -1, 1 });
    AbstractLeastSquaresOptimizer optimizer = createOptimizer();
    PointVectorValuePair optimum =
        optimizer.optimize(new MaxEval(100),
                           problem.getModelFunction(),
                           problem.getModelFunctionJacobian(),
                           problem.getTarget(),
                           new Weight(new double[] { 1, 1 }),
                           new InitialGuess(new double[] { 0, 0 }));
    Assert.assertEquals(0, optimizer.getRMS(), 1e-10);
    Assert.assertEquals(-1, optimum.getPoint()[0], 1e-10);
    Assert.assertEquals(1, optimum.getPoint()[1], 1e-10);

    optimizer.optimize(new MaxEval(100),
                       problem.getModelFunction(),
                       problem.getModelFunctionJacobian(),
                       problem.getTarget(),
                       new Weight(new double[] { 1 }),
                       new InitialGuess(new double[] { 0, 0 }));
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:25,代码来源:AbstractLeastSquaresOptimizerAbstractTest.java

示例12: testInconsistentSizes2

import org.apache.commons.math3.optim.PointVectorValuePair; //导入依赖的package包/类
@Test(expected=DimensionMismatchException.class)
public void testInconsistentSizes2() {
    LinearProblem problem
        = new LinearProblem(new double[][] { { 1, 0 }, { 0, 1 } },
                            new double[] { -1, 1 });
    AbstractLeastSquaresOptimizer optimizer = createOptimizer();
    PointVectorValuePair optimum
        = optimizer.optimize(new MaxEval(100),
                             problem.getModelFunction(),
                             problem.getModelFunctionJacobian(),
                             problem.getTarget(),
                             new Weight(new double[] { 1, 1 }),
                             new InitialGuess(new double[] { 0, 0 }));
    Assert.assertEquals(0, optimizer.getRMS(), 1e-10);
    Assert.assertEquals(-1, optimum.getPoint()[0], 1e-10);
    Assert.assertEquals(1, optimum.getPoint()[1], 1e-10);

    optimizer.optimize(new MaxEval(100),
                       problem.getModelFunction(),
                       problem.getModelFunctionJacobian(),
                       new Target(new double[] { 1 }),
                       new Weight(new double[] { 1 }),
                       new InitialGuess(new double[] { 0, 0 }));
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:25,代码来源:AbstractLeastSquaresOptimizerAbstractTest.java

示例13: testCircleFittingBadInit

import org.apache.commons.math3.optim.PointVectorValuePair; //导入依赖的package包/类
@Test
public void testCircleFittingBadInit() {
    CircleVectorial circle = new CircleVectorial();
    double[][] points = circlePoints;
    double[] target = new double[points.length];
    Arrays.fill(target, 0);
    double[] weights = new double[points.length];
    Arrays.fill(weights, 2);
    for (int i = 0; i < points.length; ++i) {
        circle.addPoint(points[i][0], points[i][1]);
    }
    AbstractLeastSquaresOptimizer optimizer = createOptimizer();
    PointVectorValuePair optimum
        = optimizer.optimize(new MaxEval(100),
                             circle.getModelFunction(),
                             circle.getModelFunctionJacobian(),
                             new Target(target),
                             new Weight(weights),
                             new InitialGuess(new double[] { -12, -12 }));
    Vector2D center = new Vector2D(optimum.getPointRef()[0], optimum.getPointRef()[1]);
    Assert.assertTrue(optimizer.getEvaluations() < 25);
    Assert.assertEquals( 0.043, optimizer.getRMS(), 1e-3);
    Assert.assertEquals( 0.292235,  circle.getRadius(center), 1e-6);
    Assert.assertEquals(-0.151738,  center.getX(),            1e-6);
    Assert.assertEquals( 0.2075001, center.getY(),            1e-6);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:27,代码来源:AbstractLeastSquaresOptimizerAbstractTest.java

示例14: testCircleFittingGoodInit

import org.apache.commons.math3.optim.PointVectorValuePair; //导入依赖的package包/类
@Test
public void testCircleFittingGoodInit() {
    CircleVectorial circle = new CircleVectorial();
    double[][] points = circlePoints;
    double[] target = new double[points.length];
    Arrays.fill(target, 0);
    double[] weights = new double[points.length];
    Arrays.fill(weights, 2);
    for (int i = 0; i < points.length; ++i) {
        circle.addPoint(points[i][0], points[i][1]);
    }
    AbstractLeastSquaresOptimizer optimizer = createOptimizer();
    PointVectorValuePair optimum =
        optimizer.optimize(new MaxEval(100),
                           circle.getModelFunction(),
                           circle.getModelFunctionJacobian(),
                           new Target(target),
                           new Weight(weights),
                           new InitialGuess(new double[] { 0, 0 }));
    Assert.assertEquals(-0.1517383071957963, optimum.getPointRef()[0], 1e-6);
    Assert.assertEquals(0.2074999736353867,  optimum.getPointRef()[1], 1e-6);
    Assert.assertEquals(0.04268731682389561, optimizer.getRMS(),       1e-8);
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:24,代码来源:AbstractLeastSquaresOptimizerAbstractTest.java

示例15: doTestStRD

import org.apache.commons.math3.optim.PointVectorValuePair; //导入依赖的package包/类
public void doTestStRD(final StatisticalReferenceDataset dataset,
                       final double errParams,
                       final double errParamsSd) {
    final AbstractLeastSquaresOptimizer optimizer = createOptimizer();
    final double[] w = new double[dataset.getNumObservations()];
    Arrays.fill(w, 1);

    final double[][] data = dataset.getData();
    final double[] initial = dataset.getStartingPoint(0);
    final StatisticalReferenceDataset.LeastSquaresProblem problem = dataset.getLeastSquaresProblem();
    final PointVectorValuePair optimum
        = optimizer.optimize(new MaxEval(100),
                             problem.getModelFunction(),
                             problem.getModelFunctionJacobian(),
                             new Target(data[1]),
                             new Weight(w),
                             new InitialGuess(initial));

    final double[] actual = optimum.getPoint();
    for (int i = 0; i < actual.length; i++) {
        double expected = dataset.getParameter(i);
        double delta = FastMath.abs(errParams * expected);
        Assert.assertEquals(dataset.getName() + ", param #" + i,
                            expected, actual[i], delta);
    }
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:27,代码来源:AbstractLeastSquaresOptimizerAbstractTest.java


注:本文中的org.apache.commons.math3.optim.PointVectorValuePair类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。