当前位置: 首页>>代码示例>>Java>>正文


Java EuclideanDistance类代码示例

本文整理汇总了Java中org.apache.commons.math3.ml.distance.EuclideanDistance的典型用法代码示例。如果您正苦于以下问题:Java EuclideanDistance类的具体用法?Java EuclideanDistance怎么用?Java EuclideanDistance使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


EuclideanDistance类属于org.apache.commons.math3.ml.distance包,在下文中一共展示了EuclideanDistance类的12个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Java代码示例。

示例1: testPerformClusterAnalysisToManyClusters

import org.apache.commons.math3.ml.distance.EuclideanDistance; //导入依赖的package包/类
/**
 * 2 variables cannot be clustered into 3 clusters. See issue MATH-436.
 */
@Test(expected=NumberIsTooSmallException.class)
public void testPerformClusterAnalysisToManyClusters() {
    KMeansPlusPlusClusterer<DoublePoint> transformer = 
        new KMeansPlusPlusClusterer<DoublePoint>(3, 1, new EuclideanDistance(), random);
    
    DoublePoint[] points = new DoublePoint[] {
        new DoublePoint(new int[] {
            1959, 325100
        }), new DoublePoint(new int[] {
            1960, 373200
        })
    };
    
    transformer.cluster(Arrays.asList(points));

}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:20,代码来源:KMeansPlusPlusClustererTest.java

示例2: getPredictedValue

import org.apache.commons.math3.ml.distance.EuclideanDistance; //导入依赖的package包/类
/**
 * This method is to predict the label of a given data point
 */
private String getPredictedValue(Vector dataPointVector, int clusterIndex, double clusterBoundary) {

    String prediction;
    EuclideanDistance euclideanDistance = new EuclideanDistance();
    Vector[] clusterCenters = kMeansModel.clusterCenters();

    double[] dataPoint = dataPointVector.toArray();
    double[] clusterCenter = clusterCenters[clusterIndex].toArray();
    double distance = euclideanDistance.compute(clusterCenter, dataPoint);

    if (distance > clusterBoundary) {
        prediction = anomalyLabel;
    } else {
        prediction = normalLabel;
    }

    return prediction;
}
 
开发者ID:wso2-attic,项目名称:carbon-ml,代码行数:22,代码来源:AnomalyDetectionModel.java

示例3: initializeNeighborhood

import org.apache.commons.math3.ml.distance.EuclideanDistance; //导入依赖的package包/类
private void initializeNeighborhood() {
  EuclideanDistance euclideanDistance = new EuclideanDistance();
  double[] x = new double[numberOfWeightVectors];
  int[] idx = new int[numberOfWeightVectors];

  for (int i = 0; i < numberOfWeightVectors; i++) {
    // calculate the distances based on weight vectors
    for (int j = 0; j < numberOfWeightVectors; j++) {
      x[j] = euclideanDistance.compute(weightVector[i], weightVector[j]);
      idx[j] = j;
    }

    // find 'niche' nearest neighboring subproblems
    minFastSort(x, idx, numberOfWeightVectors, neighborSize);

    System.arraycopy(idx, 0, neighborhood[i], 0, neighborSize);
  }
}
 
开发者ID:jMetal,项目名称:jMetal,代码行数:19,代码来源:WeightVectorNeighborhood.java

示例4: tune

import org.apache.commons.math3.ml.distance.EuclideanDistance; //导入依赖的package包/类
@Override
public void tune(DataSequence observedSeries,
                 DataSequence expectedSeries,
                 IntervalSequence anomalySequence) throws Exception {
    // Compute the time-series of errors.
    HashMap<String, ArrayList<Float>> allErrors = aes.initAnomalyErrors(observedSeries, expectedSeries);
    List<IdentifiedDoublePoint> points = new ArrayList<IdentifiedDoublePoint>();
    EuclideanDistance ed = new EuclideanDistance();
    int n = observedSeries.size();
    
    for (int i = 0; i < n; i++) {
        double[] d = new double[(aes.getIndexToError().keySet()).size()];
       
        for (int e = 0; e < (aes.getIndexToError().keySet()).size(); e++) {
             d[e] = allErrors.get(aes.getIndexToError().get(e)).get(i);
        }
        points.add(new IdentifiedDoublePoint(d, i));
    }
    
    double sum = 0.0;
    double count = 0.0;
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < n; j++) {
            sum += ed.compute(points.get(i).getPoint(), points.get(j).getPoint());
            count++;
        }
    }
    eps = ((double) this.sDAutoSensitivity) * (sum / count);   
    minPoints = ((int) Math.ceil(((double) this.amntAutoSensitivity) * ((double) n)));     
    dbscan = new DBSCANClusterer<IdentifiedDoublePoint>(eps, minPoints);
}
 
开发者ID:yahoo,项目名称:egads,代码行数:32,代码来源:DBScanModel.java

示例5: clusters

import org.apache.commons.math3.ml.distance.EuclideanDistance; //导入依赖的package包/类
@operator (
		value = "kmeans",
		can_be_const = false,
		type = IType.LIST,
		category = { IOperatorCategory.STATISTICAL },
		concept = { IConcept.STATISTIC, IConcept.CLUSTERING })
@doc (
		value = "returns the list of clusters (list of instance indices) computed with the kmeans++ algorithm from the first operand data according to the number of clusters to split the data into (k) and the maximum number of iterations to run the algorithm for (If negative, no maximum will be used) (maxIt). Usage: kmeans(data,k,maxit)",
		special_cases = "if the lengths of two vectors in the right-hand aren't equal, returns 0",
		examples = { @example (
				value = "kmeans ([[2,4,5], [3,8,2], [1,1,3], [4,3,4]],2,10)",
				isExecutable = false) })
public static GamaList<GamaList> KMeansPlusplusApache(final IScope scope, final GamaList data, final Integer k,
		final Integer maxIt) throws GamaRuntimeException {
	final MersenneTwister rand = new MersenneTwister(scope.getRandom().getSeed().longValue());

	final List<DoublePoint> instances = new ArrayList<DoublePoint>();
	for (int i = 0; i < data.size(); i++) {
		final GamaList d = (GamaList) data.get(i);
		final double point[] = new double[d.size()];
		for (int j = 0; j < d.size(); j++) {
			point[j] = Cast.asFloat(scope, d.get(j));
		}
		instances.add(new Instance(i, point));
	}
	final KMeansPlusPlusClusterer<DoublePoint> kmeans =
			new KMeansPlusPlusClusterer<DoublePoint>(k, maxIt, new EuclideanDistance(), rand);
	final List<CentroidCluster<DoublePoint>> clusters = kmeans.cluster(instances);
	final GamaList results = (GamaList) GamaListFactory.create();
	for (final Cluster<DoublePoint> cl : clusters) {
		final GamaList clG = (GamaList) GamaListFactory.create();
		for (final DoublePoint pt : cl.getPoints()) {
			clG.addValue(scope, ((Instance) pt).getId());
		}
		results.addValue(scope, clG);
	}
	return results;
}
 
开发者ID:gama-platform,项目名称:gama,代码行数:39,代码来源:Stats.java

示例6: setUp

import org.apache.commons.math3.ml.distance.EuclideanDistance; //导入依赖的package包/类
@Before
public void setUp() {
    evaluator = new SumOfClusterVariances<DoublePoint>(new EuclideanDistance());
}
 
开发者ID:Quanticol,项目名称:CARMA,代码行数:5,代码来源:SumOfClusterVariancesTest.java

示例7: ClusterEvaluator

import org.apache.commons.math3.ml.distance.EuclideanDistance; //导入依赖的package包/类
/**
 * Creates a new cluster evaluator with an {@link EuclideanDistance}
 * as distance measure.
 */
public ClusterEvaluator() {
    this(new EuclideanDistance());
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:8,代码来源:ClusterEvaluator.java

示例8: DBSCANClusterer

import org.apache.commons.math3.ml.distance.EuclideanDistance; //导入依赖的package包/类
/**
 * Creates a new instance of a DBSCANClusterer.
 * <p>
 * The euclidean distance will be used as default distance measure.
 *
 * @param eps maximum radius of the neighborhood to be considered
 * @param minPts minimum number of points needed for a cluster
 * @throws NotPositiveException if {@code eps < 0.0} or {@code minPts < 0}
 */
public DBSCANClusterer(final double eps, final int minPts)
    throws NotPositiveException {
    this(eps, minPts, new EuclideanDistance());
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:14,代码来源:DBSCANClusterer.java

示例9: KMeansPlusPlusClusterer

import org.apache.commons.math3.ml.distance.EuclideanDistance; //导入依赖的package包/类
/** Build a clusterer.
 * <p>
 * The default strategy for handling empty clusters that may appear during
 * algorithm iterations is to split the cluster with largest distance variance.
 * <p>
 * The euclidean distance will be used as default distance measure.
 *
 * @param k the number of clusters to split the data into
 * @param maxIterations the maximum number of iterations to run the algorithm for.
 *   If negative, no maximum will be used.
 */
public KMeansPlusPlusClusterer(final int k, final int maxIterations) {
    this(k, maxIterations, new EuclideanDistance());
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:15,代码来源:KMeansPlusPlusClusterer.java

示例10: FuzzyKMeansClusterer

import org.apache.commons.math3.ml.distance.EuclideanDistance; //导入依赖的package包/类
/**
 * Creates a new instance of a FuzzyKMeansClusterer.
 * <p>
 * The euclidean distance will be used as default distance measure.
 *
 * @param k the number of clusters to split the data into
 * @param fuzziness the fuzziness factor, must be &gt; 1.0
 * @throws NumberIsTooSmallException if {@code fuzziness <= 1.0}
 */
public FuzzyKMeansClusterer(final int k, final double fuzziness) throws NumberIsTooSmallException {
    this(k, fuzziness, -1, new EuclideanDistance());
}
 
开发者ID:biocompibens,项目名称:SME,代码行数:13,代码来源:FuzzyKMeansClusterer.java

示例11: WeightedKMeansPlusPlusClusterer

import org.apache.commons.math3.ml.distance.EuclideanDistance; //导入依赖的package包/类
/** Build a clusterer.
 * <p>
 * The default strategy for handling empty clusters that may appear during
 * algorithm iterations is to split the cluster with largest distance variance.
 * <p>
 * The euclidean distance will be used as default distance measure.
 *
 * @param k the number of clusters to split the data into
 * @param maxIterations the maximum number of iterations to run the algorithm for.
 *   If negative, no maximum will be used.
 */
public WeightedKMeansPlusPlusClusterer(final int k, final int maxIterations) {
    this(k, maxIterations, new EuclideanDistance());
}
 
开发者ID:C0rWin,项目名称:Java-KMeans-Coreset,代码行数:15,代码来源:WeightedKMeansPlusPlusClusterer.java

示例12: AdaptedIsoClustering

import org.apache.commons.math3.ml.distance.EuclideanDistance; //导入依赖的package包/类
/**
 * Build a clusterer.
 * <p/>
 * The default strategy for handling empty clusters that may appear during
 * algorithm iterations is to split the cluster with largest distance variance.
 * <p/>
 * The euclidean distance will be used as default distance measure.
 *
 * @param k             the number of clusters to split the data into
 * @param maxIterations the maximum number of iterations to run the algorithm for.
 *                      If negative, no maximum will be used.
 */
public AdaptedIsoClustering(final int k, final int maxIterations) {
    this(k, maxIterations, new EuclideanDistance());
}
 
开发者ID:senbox-org,项目名称:s2tbx,代码行数:16,代码来源:AdaptedIsoClustering.java


注:本文中的org.apache.commons.math3.ml.distance.EuclideanDistance类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。